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Dynamics and thermodynamics of the spherical frustrated Blume-Emery-Griffiths model

A. Caiazzo, A. Coniglio, and M. Nicodemi
Dipartimento di Scienze Fisiche, INFM, Unita´ di Napoli, Monte Sant’Angelo, I-80126 Napoli, Italy

~Received 5 June 2002; published 2 October 2002!

We introduce a spherical version of the frustrated Blume-Emery-Griffiths model and solve exactly the statics
and the Langevin dynamics for zero particle-particle interaction (K50). In this case the model exhibits an
equilibrium transition from a disordered to a spin glass phase, which is always continuous for nonzero tem-
perature. The same phase diagram results from the study of the dynamics. Furthermore, we note the existence
of a nonequilibrium time regime in a region of the disordered phase, characterized by aging, as occurs in the
glassy phase. Due to a finite equilibration time, the system displays in this region the pattern of interrupted
aging.
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I. INTRODUCTION

Many important features of spin glass models at me
field level have come out by studying their relaxional Lang
vin dynamics from a random initial condition@1–9#. The
structure of the dynamical equations for the correlation a
response functions has reaveled some analogies with o
types of complex systems in which the disorder isa priori
absent: at equilibrium the dynamics becomes formally id
tical to the mode coupling theory~MCT!, which is the main
approach to the supercooled liquids near the glass struc
transition@10#. Thus there have been strong feelings that
two types of systems are deeply connected; in the glasse
effective disorder is self-induced by the slow dynamics
the microscopical variables@2#.

For spin glass systems, the dynamical equations h
been studied also in the low temperature phase@5–9#. These
works provide a suggestion to extend the MCT below
glass temperature@11#. One of the main result has been th
for these temperatures the system never reaches the eq
rium, but rather displays an off-equilibrium behavior whe
the dynamics depends on the whole history of the system
to the beginning of its observation and is characterized
the loss of validity of typical equilibrium properties, such
the time translational invariance~TTI! and the fluctuation-
dissipation theorem~FDT!. One can thus establish conta
with some nonequilibrium experimental observation
namely, the slow relaxations and the aging phenomena w
are observed for real spin glasses and many other com
systems@9#.

Despite the cited resemblance, spin glasses are m
scopically quite different from liquids and thus not suitab
to their description. Recently, to make stronger connecti
with liquids, some models have been introduced which co
bine features of spin glasses and the lattice gas. Being
stituted of particles, they allow to introduce the density a
other related quantities which are usually important in
study of liquids. In this regard we consider the frustrat
Blume-Emery-Griffiths ~BEG! model @14,17#, which is a
quite general framework to describe different glassy syste
Its mean field Hamiltonian is

H52(
i , j

Ji j sinisjnj2
K

N (
i , j

ninj2m(
i

ni , ~1!
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wheresi561, ni50,1, m is the chemical potential, andJi j
are quenched Gaussian interactions having zero mean
variance@Ji j

2 #J51/N @15#. Essentially the model consists of
lattice gas in a frustrated medium where the particles have
internal degree of freedom, given by their spin, which m
account, as an example, of the possible orientations of c
plex molecules in glass forming systems. These steric eff
are indeed greatly responsible for the geometric frustra
appearing in glass forming systems at low temperatures
high densities. Besides that, the particles interact throug
potential depending on the couplingK. In particular, forK
50 one recovers the Ghatak-Sherrington model@16# and for
K521 the Ising frustrated lattice gas model@12#; this last
case is related to the problem of the site frustrated perc
tion @22# and has also been used in the presence of gravit
describe granular materials@13#. However, as found by the
standard replica theory@14,17#, the model does not displa
substantial differences by varyingK. The phase diagram in
the planem-T shows a critical line separating a spin gla
phase from a disordered one; the transition is continuous
largem, as for the standard Ising spin glass (ni51), up to a
given valuemK* below which it becomes discontinuous;
this region the Parisi solution has been obtained only
cently in@17#. Moreover, a dynamical treatment of the mod
is still lacking.

We propose a spherical version of the frustrated B
model, which allows a complete analysis of its equilibriu
properties and even of Langevin dynamics. In this paper
study this model forK50 leaving the general case to futu
investigations@18#. We find an equilibrium transition to a
spin glass phase form>21, which is always continuous
like in the spherical SK model@19#, except form521 and
T50 ~see Fig. 1!. Furthermore, we investigate the Langev
dynamics of the various two-time functions and of density
the whole phase diagram. We get exact expressions of t
quantities; they are, in general, rather complex, depending
several characteristic time scales whose number change
the various regions of the phase diagram. In particular,
largest of these times is found to represent the character
equilibration time of the system,teq . In the nonglassy phas
this is finite and for waiting timest8.teq the two-time func-
tions obey TTI and FDT. This is no more true fort8,teq ,
the system being still out of equilibrium. By studying th
regime near the critical line whereteq is large, we find two
©2002 The American Physical Society01-1
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different behaviors of the systems form.21 andm.21.
We give here a first qualitative description of them. In t
casem.21 FDT still holds fort2t8!t8, so that deviations
from the equilibrium case occur only for very small values
the correlation. Instead, asm is close to21, the range of
correlation values in the FDT regime decreases and fom
521 this vanishes; ift,t8 are sufficiently lower thanteq the
correlation function scales as a power oft8/t. Thus, in this
region the observation of the system over short time sc
could wrongly lead to conclude that the system is in
glassy phase. Then, for a large but finiteteq , the model
follows the pattern of interrupted aging. Finally,teq diverges
in the whole glassy phase and the system displays essen
the same nonequilibrium behavior of the spherical SK mo
@7#.

The paper is organized as follows. In Sec. II we define
spherical frustrated BEG model. In Sec. III we deal with t
statics using the theory of large random matrices and ana
the thermodynamical properties. In Sec. IV we introduce
Langevin dynamical model and the various quantities of
terest. In Sec. V we solve the integral equation related to
spherical constraints and compute the density. In Sec. VI
discuss the dynamics in the disordered phase and, afte
identification of the equilibration timeteq , we analyze the
equilibrium regime (t8.teq) and the out of equilibrium one
(t8,teq). In Sec. VII we consider the nonequilibrium dy
namics in the glassy phase (teq5`). Finally, in Sec. VIII we
present some conclusions. Furthermore, in the Appendic
and B we study in detail, respectively, the equilibrium sad
point equation and the dynamics when this equation has
genere roots.

II. DEFINITION OF THE MODEL

First of all we note that the Hamiltonian~1! can be rewrit-
ten in terms of two new Ising spin fieldss1i ,s2i561:

H52(
i , j

Ji j

4
~s1i1s2i !~s1 j1s2 j !2

K

4N (
i , j

~s1is2i11!

3~s1 j s2 j11!2
m

2 (
i

~s1is2i11!, ~2!

FIG. 1. The phase diagramT vs m. The critical line separating
the two phases is given by Eq.~6! for m>21. The transition is
always continuous except for the point (m521,T50).
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where

s1i5si , si5s1i ,

⇔

s2i5si~2ni21!, ni5
1

2
~s1is2i11!, ~3!

@15#. The four-field interaction in Eq.~1! is replaced in Eq.
~2! by four double field interactions; furthermore, the Ham
tonian ~2! is symmetric under the exchange of the two sp
fields. The overlap q5@^sini&

2#J and the density d
5@^ni&#J , which are two usual order parameters for a
luted spin glass, now become, respectively,1

4 @^s1i1s2i&
2#J

and 1
2 @^s1is2i&11#J . So far we have just reformulated th

BEG model. Now to define our spherical version, let t
Ising constraints fall in Eq.~2! and replace them by the
spherical ones:( is1i

2 5( is2i
2 5N. This particular choice of

the variables to sphericize aims to obtain an exactly solva
model. It recovers the spherical SK model@19# in the large-
m limit ( s1i5s2i). Below we will consider the caseK50.

To study the model it is convenient to diagonalize t
interaction matrixJi j (( j Ji j h j l5lh il) and work with the
variablessal5( ih ilsai(a51,2); these obey the propertie
( isaisbi5(lsalsbl and ( i j Ji j saisb j5(llsalsbl . In the N
→` limit the eigenvalue densityr(l) satisfies the Wigner
semicircle law:

r~l!5H 1

2p
A42l2, ulu,2

0, ulu>2;

~4!

the quantitiesh il are Gaussian variables with zero mean a
moments@h il

2k#J5(2k21)!!/Nk; they are uncorrelated to
the eigenvalues and among themselves, apart from the o
normality and closure conditions.

III. EQUILIBRIUM PROPERTIES

A. Saddle point equation

The statics can be solved by standard techniques
spherical models and the above properties of large rand
matrices@19#. In theN→` limit the free energy is evaluate
by steepest descent, by imposing saddle point conditi
with respect to the two Lagrange multipliersz1 and z2, in-
troduced by the spherical constraints. These equations
reproduce the two constraints satisfied on average,(l^sal

2 &
5N(a51,2). Explicitly they are reduced to only one:

1

2b2
@z2Az224b2#512

1

z12bm
, ~5!

where z5z11bm5z21bm has to be greater than th
branch points$2b,22bm%. This condition is satisfied by a
unique solution of Eq.~5!, denoted byzs , for eachT if m
,21 and above a critical line,T5Tc(m), for m>21. This
region of the phase diagram identifies the disordered ph
1-2
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~labeled by P in Fig. 1!. The critical line is located byzs
reaching the branch point 2b and is given by

Tc~m!5
m11

m13/2
. ~6!

A detailed study of Eq.~5! is given in Appendix A. Below
the critical line ~phase SG in Fig. 1! this equation is not
satisfied forz.2b. The equilibrium saddle value ofz sticks
at the branch point 2b, and to preserve the spherical co
straints a spontaneous magnetization arises along the e
vector with eigenvalue 2. Actually, the diluted overlapq
5 1

4 @^s1i1s2i&
2#J is found to vanish when Eq.~5! holds and

becomes just̂sal52&
2/N below the critical line, i.e.,
ic

se
de
in

e

re

K

04610
en-

q512
1

b
2

1

2~b1bm!
512

T

Tc~m!
. ~7!

The transition at the lineT5Tc(m) is continuous for each
m.21 and discontinuous at the point (m521,T50). In-
deed the zero-temperature value ofq is q(m11) with q
50 for m521. Note that the model could be solved usin
the replica trick, where a replica symmetric ansatz yie
identical results.

B. Free energy and related quantities

The free energy per sitef can be explicitly evaluated:
b f 5H 2
zs12bm

2
2 ln 4p1

1

2
ln~zs12bm!1

b2

4 S 12
1

zs12bm D 2

2
1

2
lnS 12

1

zs12bm D , P

2~b1bm!2 ln 4p1
1

2
ln 2~b1bm!1

1

4
1

1

2
ln b, SG;

~8!
t

m-

the
it corresponds to a negative low temperature entropy wh
diverges logarithmically asT→0. This pathology is typical
of spherical models, even in the short-ranged uniform ca

Now we analyze other thermodynamic quantities in or
to characterize the system and for comparison with the Is
case@14,17#. The densityd5 1

2 @^s1is2i&11#J is given by
2] f /]m:

d5H 12
1

zs12bm
, P

12
1

2~b1bm!
, SG;

~9!

it is represented in Fig. 2 as a function ofT for several values
of m. In the large-temperature limitd approaches the valu
1/2 for eachm. For T50 we getd5q5q(m11) with d
5q50 for m521; note that, unlike the Ising version, the
is no interval ofm values where 0,d,1. In the spin glass
phase a partial freezing takes place (d,q,1), except at
zero temperature where the system is fully frozen (d5q
51). For m→` the model approaches the spherical S
limit @19#: Tc51, d51, q512T. The compressibilityk
5(1/b)(]d/]m) is found to be

k55
2S 12

1

zs12bm D
~zs12bm!2S 12

1

zs12bm D1Azs
224b2

, P

1

2~b1bm!2
, SG;

~10!
h

.
r
g

its plot as a function ofT is given in Fig. 3. A cusp at the
critical temperatureTc(m) whose height diverges in the limi
m→211 is evident.k goes to the value 1/4 for eachm in the
large temperature limit. For zero temperaturek50 for each
m. Finally the specific heatc is

FIG. 2. The densityd vs T for several values ofm. The inter-
section of the curves with the dotted line locates the critical te
peratureTc(m). Thus, the initial straight part of the curves form
.21 corresponds to temperatures for which the system is in
glassy phase@bottom of Eq.~9!#. In the large-T limit d goes to the
value 1/2 for eachm. Note also that at zero temperatured51 for
m.21 andd50 for m<21.
1-3
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c55 12
zs

2
2

Azs
224b2F ~zs12bm!2S 12

1

zs12bm D1bmG2~zs12bm!2

~zs12bm!2S 12
1

zs12bm D1Azs
224b2

, P

1, SG;

~11!
d

h
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n
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the

l-

f

it presents a cusp at the transition form.21, while for T
50, it is discontinuous sincec5 1

2 for m<21 ~Fig. 4!. The
large-m limit is given by c5 1

2 11/2T2 for T.1.

C. In the presence of a magnetic field

Adding to the Hamiltonian~2! a magnetic-field term,
2( i(hi /2)(s1i1s2i), the saddle point equation is modifie
by adding*dlr(l)(bhl)2/(z2bl)2 to the left hand side of
Eq. ~5!. Assuming a uniform field,hi5h, one can replacehl

2

by its average valueh2. Thus one finds that forhÞ0 there is
no transition, since in this casezs never reaches the branc
point 2b.

Let us now compute the diluted susceptibilities in ze
field. The linear one obeys the diluted Curie law in the d
ordered phase and is constant forT,Tc(m), so to display a
cusp crossing the critical line~Fig. 5!:

x52
]2f

]h2
uh505H bS 12

1

zs12bm D , P

1, SG,

~12!

notice that the previous result can be obtained also from
linear response theoremx5b(d2q). The zero-temperature
expression isx52m2Am221 for m<21. The spin glass
susceptibility is given by

FIG. 3. The compressibilityk vs T for several values ofm. A
cusp is evident at the critical temperatureTc(m) at least for values
of m close to21. The height of the cusp diverges asm→211.
The intersection of the dotted line with the curves form.21 lo-
cates the critical temperatureTc(m); k increases with the square o
T in the glassy phase@bottom of Eq.~10!#. For T→` k, goes to 1/4
for eachm.
04610
-

e

xSG5(
lm

S ]2f

]hl]hm
D

h50

2

5H 1

2 S zs

Azs
224b2

21D , P

`, SG;
~13!

coming from high temperatures it diverges at the critical li
as 1/@T2Tc(m)# and remains infinite in the whole froze
phase. For zero temperature it is given byxSG5 1

2

(2m/Am22121) for m<21. The large-m limit is xSG
51/T221 for T.1.

IV. LANGEVIN DYNAMICS

Now we deal with the Langevin relaxional dynamics
the model. Let us assume that the two spin fields evolve
usual Langevin equations, which when projected onto
basisl become

ds1l

dt
5S l

4
2

z1~ t !

2 D s1l1S l

4
1

m

2 D s2l1h1l~ t !1j1l~ t !

ds2l

dt
5S l

4
1

m

2 D s1l1S l

4
2

z2~ t !

2 D s2l1h2l~ t !1j2l~ t !,

~14!

whereza(t), a51,2 are two time-dependent Lagrange mu
tipliers enforcing the spherical constraints,hal(t) are two

FIG. 4. The specific heatc vs T for several values ofm. Note
the cusp at the transition temperatureTc(m) for m.21. c51 in
the glassy phase@bottom of Eq.~11!#. In the zero-T limit, c51/2 for
eachm<21.
1-4
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external fields interacting with the fieldsal , andjal are the
thermal noises with zero mean and correlatio
^jal(t)jbm(t8)&52Tdabdlmd(t2t8), a,b51,2. Hereafter
we use^ & to represent the average over the thermal nois

Let us now introduce the quantities of interest, name
the correlation functionsCab(t,t8) (a,b51,2), the response
functionsGab(t,t8), and the densityd(t):

Cab~ t,t8!5F 1

N (
i

^sai~ t !sbi~ t8!&G
J

5E dl r~l!^sal~ t !sbl~ t8!&, ~15!

Gab~ t,t8!5F 1

N (
i

d^sai~ t !&

dhbi~ t8!
U

h50
G

J

5E dl r~l!
d^sal~ t !&

dhbl~ t8!
h50 , ~16!

d~ t !5
1

2
@C12~ t,t !11#. ~17!

A quite general procedure allows one to derive from E
~14! closed equations for these functions as saddle point
lutions of a dynamical generating functional@1,2#. Using this
procedure one implicitly assumes the initial lattice fiel
sai(0) as random variables with a Gaussian distribution
zero mean and variancesai(0)sbi(0)5112(12dab)@d(0)
21# ~the overbar stands for the average over the rand
initial conditions!; the same is valid forsal(0), because of
the rotational invariance of the Gaussian distribution. Ho
ever, in our case these functional techniques can be avo
as much as in Refs.@3,7#. Due to its linearity, the Langevin
system~14! can be explicitely solved for given noises, th
the various dynamical quantities can be evaluated avera
over the noises and the eigenvaluesl. In the following we

FIG. 5. The susceptibilityx vs T for several values ofm. Note
the cusp at the transition temperatureTc(m) for m.21. x51 in
the glassy phase@bottom of Eq.~12!#. In the zero-T limit x52m
2Am221 for m<21.
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choose the initial conditions indicated previously. The d
namical model can be solved for anyd(0); but it can be
shown that the value ofd(0) does not influence the lon
time behavior for nonzsero temperature, so we take for s
plicity d(0)51.

For zero external fields the dynamical model is for ea
time symmetric under the exchange of the two spin fiel
Since below we will discuss the dynamics only in this ca
we can exploit this symmetry and limit ourselves to sol
Eqs.~14! for z1(t)5z2(t). The solution is then given by

sal~ t !5
1

2AG~ t !
H elt/2@s1l~0!1s2l~0!#

1hae2mt@s1l~0!2s2l~0!#

1E
0

t

du el(t2u)/2AG~u!@j1l~u!1h1l~u!1j2l~u!

1h2l~u!#1haE
0

t

du e2m(t2u)AG~u!

3@j1l~u!1h1l~u!2j2l~u!2h2l~u!#J , ~18!

whereha5da,12da,2 and

G~ t !5expE
0

t

z~u!du, z~ t !5z1~ t !2m5z2~ t !2m.

~19!

As a consequence of the above symmetry, in the abse
of external fields the four correlation functions coincide m
tually, so we have to study only two of them:C1a(a51,2).
The same occurs for the relative response functions. No
that when written in the original variablessi and ni ,
C11(t,t8) is just the spin-spin correlation function, whil
C12(t,t8) is a rather strange correlator made by a combi
tion of spin and density variables. Instead, the dens
density connected correlation function, which enters in
schematic version of MCT@20#, involves 4-spin functions in
the formalism of the lattice fieldss1 ,s2:

Cnn~ t,t8!5F 1

4N (
i

@^s1i~ t !s2i~ t !s1i~ t8!s2i~ t8!&

2^s1i~ t !s2i~ t !&^s1i~ t8!s2i~ t8!&#G
J

. ~20!

However, since the model is quadratic, this quantity
readily related toC1a and we getCnn(t,t8)5 1

4 @C11(t,t8)
2

1C12(t,t8)
2#.

From Eq. ~18!, taking into account the previous initia
conditions, we find fort>t8 and zero external fields
1-5
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C1a~ t,t8!5
2

AG~ t !G~ t8!
F I 1~ t1t8!

t1t8

1TE
0

t8
duS I 1~ t1t822u!

t1t822u

1
hae2m(t1t822u)

2 D G~u!G , ~21a!

G1a~ t,t8!5AG~ t8!

G~ t ! F I 1~ t2t8!

t2t8
1

ha

2
e2m(t2t8)G .

~21b!

In these formulasI 1 is the modified Bessel function of orde
1; we have used that*dlr(l)elt5I 1(2t)/t. Instead, the
function G(t) is still indeterminate; it can be computed se
consistently, as a solution of the integral equation obtai
by enforcing the spherical constraintC11(t,t)51:

G~ t !5
I 1~2t !

t
1TE

0

t

duF I 1~2~ t2u!!

t2u
1e22m(t2u)GG~u!.

~22!

Taking into account Eq.~22!, one can get the following use
ful expressions forC1a(t,t8) andd(t):

C1a~ t,t8!5

GS t1t8

2 D
AG~ t !G~ t8! H 112da,2FdS t1t8

2 D21G

22TE
t8

(t1t8)/2
duF I 1~ t1t822u!

t1t822u

1
ha

2
e2m(t1t822u)G G~u!

GS t1t8

2 D J , ~23a!

d~ t !512
T

G~ t !E0

t

due22m(t2u)G~u!. ~23b!

We note from these formulas that the behavior ofC1a(t,t8)
at large times can be deduced from that ofG andd; instead
d(t) takes contributions fromG also at low times. However
we will be able to compute exactlyG(t) for each time and
then alsod(t). In the limit m→` one can neglect the las
term in Eqs.~21a!–~23b!; henced(t)51, the two correlation
functions and the two response functions coincide, reco
ing the case of the spherical SK model@7#.

V. COMPUTING THE FUNCTION G AND THE DENSITY

First, we getG(t) solving the integral equation~22! by
Laplace transform techniques. Following@7#, one could
solve Eq.~22! using a suitable expansion which is valid
the spin glass phase. However, we proceed by a diffe
technique in order to obtainG(t) in the whole phase dia
04610
d

r-

nt

gram. We find that the structure of the functionG(t) is re-
lated to the general roots of Eq.~5!, discussed in detail in
Appendix A.

Taking the Laplace transform of Eq.~22! and using the
convolution theorem, after some algebra we putG(s) in the
form:

G~s!5bF P~bs!

C~bs!
2b

Q~bs!

C~bs!
S s2As224

2 D G , ~24!

where P(z)5(z12bm)2, Q(z)5(z12bm)(z12bm21),
andC(z) is a third degree polynomial given by Eq.~A2!. We
see thatG(s) is written in terms of rational functions an
(s2As224)/2 which is the Laplace transform ofI 1(2t)/t;
thus in this form we can take readily the inverse transform
C(z) has distinct rootsak (k51,2,3) this is given by

G~ t !5 (
k51

3 Ffk
P~ak!e

(ak /b)t

2bfk
Q~ak!E

0

t

e(ak /b)(t2u)
I 1~2u!

u
duG , ~25!

wherefk
P(ak)5P(ak)/C8(ak) and fk

Q(ak)5Q(ak)/C8(ak)
with k51,2,3. The case of degenere roots~lines l i in Fig. 8!
can be treated analogously and presents no qualitative di
ences; so we leave it in Appendix B.

The integral appearing in Eq.~25! can be manipulated
using the integral representation of the modified Bessel fu
tion I 1; we obtain

E
0

t

e2cv
I 1~v!

v
dv5c2Ac2212e2(c21)tJc~ t !,

Jc~ t !5
1

pE21

1

dx
A12x2

c2x
e(x21)t, ~26!

wherec is, in general, complex but¹] 21,1@ . For long time
the integralJc(t) can be evaluated analytically by a suitab
expansion. Fort@1/uc21u we get

Jc~ t !.
1

A2pt3~c21!
F12

3

2t S 1

c21
1

1

4D G . ~27!

Whenc is real and close to 1, a new time regime exists
1!t!1/(c21). In this regime we find a different behavio
of the integral:

Jc~ t !.A 2

ptF12Apt~c21!12t~c21!2
1

8t G . ~28!

In particular, in the limitc→11 this regime holds for each
t@1 and one hasJc(t).A2/pt. Note that the leading term
in Eq. ~27! or Eq. ~28! is enough for the following discus
sion; we retain the higher-order terms in the expansions o
for the numerical calculations of the following section.

Let us come back toG(t). Taking into account of Eq.
~26!, it can be rewritten as

G~ t !5 (
k51

3

@S~ak!e
(ak /b)t1fk

Q~ak!be2tJak/2b~2t !#,

~29!

where
1-6
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S~ak!5fk
P~ak!2fk

Q~ak!S ak2Aak
224b2

2
D 55

~ak12bm!22b2~ak12bm21!2

C8~ak!
if ak satisfies Eq.~5!

C~ak!

C8~ak!
50 otherwise.

~30!
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OnceG(t) is known, the functiond(t) can be also exactly
evaluated. Replacing Eq.~29! in Eq. ~23b! we find

d~ t !512
T

2G~ t ! (
k51

3 H S~ak!

ak/2b1m
~e(ak /b)t2e22mt!

1
fk

Q~ak!b

ak/2b1m
Fe2t@Jak/2b~2t !2J2m~2t !#

2e22mtS ak2Aak
224b2

2b
1m1Am221D G J .

~31!

From Eq.~30! we see that the exponentials with rootsak
not satisfying Eq.~5! play no role. To know what and how
many exponentials make upG(t) and d(t) in the different
regions of the phase diagram, one has just to consult
table~A5! and Fig. 8. Computing the large-time limit ofG(t)
and d(t), we find only a few different behaviors which w
list now. For zero temperature we haveG(t)5I 1(2t)/t and
d(t)51 for eacht and m. In the spin glass phase and fo
T5Tc(m) we retain in Eqs.~29! and~31! only the dominant
exponentiale2t. EvaluatingJak/2b(2t) and J2m(2t) by the
leading term in Eq.~27!, and then using the identity~A4!, we
get after some algebra

G~ t !.
e2t

A4pt3 (
k51

3 b2fk
Q~ak!

ak22b
5

e2t

A4pt3

d

qEA
2

, ~32a!

d~ t !.12
T

2G~ t ! (
k51

3 b2fk
Q~ak!

ak12bm

3F e2t

A4pt3 S 2b

ak22b
1

1

m11D G5d, ~32b!

where qEA is the Edwards-Anderson parameter coincidi
with Eq. ~7! and d is the equilibrium density given by th
second part of Eq.~9!. At the critical transition line, only a
slight difference occurs with respect to the previous case:
integralJa1/2b(2t)5J1(2t), given by Eq.~28!, prevails over

the others for larget. Then using thatf1
Q(2b)51 one has

G(t).be2t/Apt. Finally, in the nonglassy phase we g
readily G(t).S(zs)e

(zs /b)t, wherezs is the equilibrium so-
lution of Eq. ~5!. Correspondingly, the density tends to
equilibrium value given by the top of Eq.~9!.
04610
he
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VI. DYNAMICS IN THE NONGLASSY PHASE

Now we specialize the general expressions of the dyna
cal quantities obtained previously for the case of the n
glassy phase. It is convenient to put in evidence the lar
time dominant exponentiale(zs /b)t in Eq. ~29!, G(t)
5e(zs /b)tV(t),

V~ t !5S~zs!1e22t/t(
k51

3

bfk
Q~ak!Jak/2b~2t !1e22t/t2S~a2!

1e22t/t3S~a3! ~33!

and then replaceG(t) in Eqs.~23a!, ~23b! and~21b!. We get
the following exact expressions:

C1a~ t,t8!5

VS t1t8

2 D
AV~ t !V~ t8! H 112da,2FdS t1t8

2 D21G
2

1

bE0

t2t8
dvF I 1~v!

v
e2v(111/t)

1
ha

2
e2v/t8GVS t1t82v

2 D
VS t1t8

2 D J , ~34a!

G1a~ t,t8!5AV~ t8!

V~ t ! F I 1~ t2t8!

t2t8
e2(t2t8)(111/t)

1
ha

2
e2(t2t8)/t8G , ~34b!

d~ t !512
T

2V~ t ! H S~zs!

zs/2b1m
~12e22t/t8!

1
S~a2!

a2/2b1m
~e22t/t22e22t/t8!1

S~a3!

a3/2b1m

3~e22t/t32e22t/t8!1 (
k51

3 fk
Q~ak!b

ak/2b1m

3Fe22t/t@Jak/2b~2t !2J2m~2t !#2e22t/t8

3S ak2Aak
224b2

2b
1m1Am221D G J . ~34c!

In the previous formulas we have introduced t
1-7
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characteristic times:

t5
1

zs/2b21
, t85

1

zs/2b1m
,

t25
1

zs/2b2a2/2b
, t35

1

zs/2b2a3/2b
. ~35!

We recall that the exponentials with the characteristic tim
t2 ,t3 are absent in the regions of the phase diagram, wh
the relative rootsa2 ,a3 do not satisfy Eq.~5!. In this regard
see the table~A5! and Fig. 8.

A. Equilibrium dynamics

From the discussion done in Sec. III we deduce thatt2
and t3, if present, are in any case lower than the larg
betweent andt8. This implies that the largest of the cha
acteristic times~35! is given byteq5max$t,t8%. In particular,
one hasteq5t or t8 according tom.21 or ,21, while
for m521, teq5t5t8. The timeteq can be identified as
the characteristic equilibration time of the system. In fact
waiting timest8.teq , the density~34c! is practically con-
stant at the equilibrium valued given by the top of Eq.~9!,
while the two-time functions~34a!,~34b! obey TTI and FDT
(TG1a(t2t8)5]C1a(t2t8)/]t8), being given by

C1a~ t2t8!5112da,2~d21!

2
1

bE0

t2t8
dvF I 1~v!

v
e2v(111/t)1

ha

2
e2v/t8G

5e2(t2t8)/t
J111/t~ t2t8!

b
1

hat8

2b
e2(t2t8)/t8,

~36a!

G1a~ t2t8!5
I 1~ t2t8!

t2t8
e2(t2t8)(111/t)1

ha

2
e2(t2t8)/t8.

~36b!

To obtain the second line we have used Eq.~26!. Note that
the equilibrium correlation functionsC1a(t2t8) decay expo-
nentially to zero with the characteristic relaxation time giv
just byteq . For m.21, teq5t diverges at the critical line
as t.2Tc(m)4/@T2Tc(m)#2, signaling critical slowing
down; this implies that for eachm.21 the dynamical tran-
sition temperature coincides with the static one, as occur
other continuous models@6–8#. Actually, the integral
J111/t(t2t8), given by Eq. ~27! or Eq. ~28!, provides a
power law correction to the exponential decay; it goes at
2t8)23/2 for t2t8@t or as (t2t8)21/2 in the critical regime
for t2t8!t. Finally, teq diverges also forT→0 andm<
21 asteq5t8.2b.

B. Nonequilibrium dynamics

For waiting timest8 lower thanteq the system is not ye
in equilibrium and the dynamics is described by Eqs.~34a!–
~34c!; these equations are formally analogous to th
04610
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r
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valid in the spin glass phase that we discuss below. Whenteq
is small, as usually occurs in the nonglassy phase, the eq
bration is fast and the time ranget8,teq represents just a
short initial transient. However,teq can be made arbitrarily
large as soon as one approaches the critical line, or for v
low temperatures andm<21; in such case a true nonequ
librium regime appears, although the system is in the n
glassy phase.

A quite useful way to characterize the relaxation proc
is by plotting the integrated responsex1a(t,t8)
5* t8

t G1a(t,u)du, multiplied by the temperatureT,

Tx1a~ t,t8!5
1

bE0

t2t8
dvF I 1~v!

v
e2v(111/t)

1
ha

2
e2v/t8GAV~ t2v!

V~ t !
~37!

as a function of the correspondent correlation funct
C1a(t,t8), given by Eq.~34a!, for different values oft8. At
equlibrium FDT implies a linear shape of these curves
cording to the relationTx1a5112da,2(d21)2C1a , while
this is no more true fort8,teq . We can thus analyze th
changeover from the equilibrium to the nonequilibrium r
gime by monitoring how the curves deviate from this straig
line. We find two different behaviors of the system along t
critical line. In order to describe them, for simplicity w
focus on the modea51.

For T close toTc(m) with m not so close to the value
21 ~see Fig. 1!, one can readily show that fort large but
sufficiently lower thanteq the functionV(t) follows its criti-
cal behavior; one has indeed

V~ t !.bSA8

t
1e22t/tJ111/t~2t ! D ,

so thatV(t).b/Apt for t!t/8p, which is just the critical
behavior. The time dependence ofV would allow one to
have aging in the correlation function. However, in this ca
the plot Tx11 vs C11 does not give much evidence of th
nonequilibrium regime and we do not report it. In fact, f
eachm.21 and finite temperature, even ift,t8,teq , FDT
still holds whent2t8!t8: the functionC11(t,t8) follows its
equilibrium expression~36a! and the plot starting out at th
point (C1151,Tx1150) is linear again. If t8@t8.1/(1
1m), one hasC11(t2t8).1/bA2/p(t2t8) so that this re-
gime extends up to small values of the correlation; thus sm
deviations from the straight line occur only in the last part
the plot until the end point (C1150,Tx1151) is asymptoti-
cally reached.

Instead, for low temperatures andm near21, the range
of C11 values in the FDT regime (t2t8!t8) decreases and
for zero temperature it disappears beingx1150 for eacht,t8.
One finds form521 and lowT,

V~ t !.
1

b
1e22t/t

1

A4pt3
,

1-8
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with t52b; thus for t!(t2/16p)1/3 one recovers the zero
temperature behaviorV(t).1/A4pt3. It may also be shown
that the same behavior occurs form,21 when t! ln b/2
(2m21). In Fig. 6 we show the curvesTx11 vs C11 for
varioust8/teq obtained in the casem521 and lowT so that
teq523104. The model exhibits in this case the pattern
interrupted aging. IfT is nonzero, i.e.,teq52b is finite, the
large-t limit of C11(t,t8) andTx11 is given, respectively, by
0 and 1. Therefore all the curves starting out at the po
(C1151,Tx1150) must end up in the same point (C11
50,Tx1151). The dependence ont8/teq enters on how the
initial and final point are joined. Ift8/teq.1 a linear plot is
obtained, as already said. Ift8/teq,1, then the plot covers a
very short part of the straight FDT line and then falls belo
this line. In particular, if the conditiont8/teq ,t/teq!1 is
realized, C11 obeys approximatively the zero-temperatu
scaling form 23/2(t8/t)3/4 and x11 is almost vanishing. The
plot follows this shape for a range which is larger, t
smaller is the value oft8/teq . Looking at these pieces of th
curves only, one could wrongly conclude that the system
in the glassy phase. But, ast becomes larger thanteq , the
plot must rise again in order to reach the point (C11
50,Tx1151); thus the final upward bending of the curves
a consequence of a finite equilibration time and correspo
to interrupted aging. In the limiting caseteq5` aging holds
for all time and the plot obeysx1150 over the entire range

FIG. 6. Tx11 vs C11 for different values oft8, with teq.2b
523104 and m521. We have takent8/teq5102x with x
51,1.5,2,2.5,3,3.5 for the curves, respectively, from the right to
left. The plot illustrates the nonlinear dependence of the integr
responseTx11 as a function ofC11 whent8 is lower thanteq . If the
condition t8/teq ,t/teq!1 is realized,C11 obeys approximately the
zero-temperature scaling form 23/2(t8/t)3/4 and x11 is almost van-
ishing, as the system was in the low temperature glassy phase
plot follows this shape for a range which is larger, the smaller
value oft8/teq is. Then, as a consequence of the finite equilibrat
time, the plot must raise again in order to reach the point (C11

50,Tx1151); thus the final upward bending of the curves cor
sponds to interrupted aging. The inset shows the curves obtaine
keeping fixedt8550 and varyingm around21. We have taken
m5211102x with x52,2.5,3,3.5,4 for the curves, respective
from left to right. The initial straight part of the curves correspo
dent to the FDT regime increases withm.
04610
f
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of C11 values. The behavior now described is similar to th
recently found in the one-dimensional Ising model w
Glauber dynamics@21#, but in that case a less trivial shape
Tx(C) is obtained.

Finally, moving along or slightly above the critical lin
with m.21 for a fixed t8550, one obtains the curve
shown in theinsetof Fig. 6. We note that their global shap
is unchanged, but now the initial straight part correspond
to the FDT regime gets longer the largerm.

VII. NONEQUILIBRIUM DYNAMICS IN THE GLASSY
PHASE

The analysis of the nonequilibrium dynamics in the glas
phase is quite similar to that of the spherical SK model d
cussed in@7#. As above, we can put in evidence the domina
exponential in Eq.~29!, which now ise2t, and then replace
G(t) in Eqs.~23a!, ~23b! and~21b!. The expressions we ge
for these quantities can be obtained by Eqs.~34a!–~34c! for
S(zs)50 and

t5`, t85
1

11m
, t25

1

12a2/2b
, t35

1

12a3/2b
.

~38!

The system is out of equilibrium on each time scale sinceteq
is infinite. Even if the rootsa2 ,a3 satisfy Eq.~5!, the char-
acteristic timest2 andt3 are very small~lower than1

2 ) and,
in practice, well inside the glassy phase, one hasV(t)
.(1/A4pt3)(d/qEA

2 ) and d(t).d, where qEA is the
Edwards-Anderson parameter coinciding with Eq.~7! andd
the equilibrium density given by the bottom of Eq.~9!.
About the two-time quantities, for large times we distingui
the following two regimes.

~1! FDT regime fort.t8 with t2t8!t8:

C1a~ t2t8!5112da,2~d21!

2
1

bE0

t2t8
dvF I 1~v!

v
e2v1

hae2v/t8

2
G

5qEA1
J1~ t2t8!

b
1

hat8

2b
e2(t2t8)/t8, ~39a!

G1a~ t2t8!5
I 1~ t2t8!

t2t8
e2(t2t8)1

ha

2
e2(t2t8)/t8,

~39b!

where qEA is the Edwards-Anderson parameter coincidi
with Eq. ~7! and d is the equilibrium density given by the
bottom of Eq.~9!. In this regime the properties TTI and FD
are satisfied. In the larget2t8 limit the two correlation func-
tions have a power law decay to the valueqEA as C1a(t
2t8)2qEA.(1/b)A2/p(t2t8); the reaching ofqEA deter-
mines the end of this regime.

~2! Aging regime fort.t8, l5t8/t.0:
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e
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-
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C1a~ t,t8!523/2
l3/4

~11l!3/2
qEA.23/2l3/4qEA , ~40a!

G1a~ t,t8!5
1

A2p

l23/4

~12l!3/2
t23/2.

1

A2p
l23/4t23/2.

~40b!

Here FDT and TTI are violated. The two correlation fun
tions coincide and have a slow decay to zero obeying po
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scaling. For spin-glass-like models, in this regime FDT c
be generalized to TG(t,t8)5X„C(t,t8)…@]C(t,t8)/]t8#,
where X is the fluctuation-dissipation ratio assumed to d
pend on time arguments only throughC and the function

X(C) is characteristic of the model@5–8#. In our case from
Eqs.~40a!,~40b! we getX1a(C1a)50, as in Ref.@7#.

Figure 7 shows an example of plotTx1a vs C1a obtained
when the system in this phase. For largert8 the curves ap-
proach the asymptotes
Tx1a5H 112da,2~d21!2C1a , qEA,C1a,112da,2~d21!

112da,2~d21!2qEA , 0,C1a,qEA ,
~41!
As
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which can be derived by Eqs.~39a!,~39b! and ~40a!,~40b!;
they correspond to the two regimes discussed previously.
zero temperature the FDT regime is absent (qEA51).

VIII. CONCLUSIONS

We have defined a spherical version of the frustrated B
model by enforcing spherical constraints to suitable Is
variables. The main advantage of such a model consists o
relative simplicity which allows to obtain a full analytica
solution of the equilibrium properties and of Langevin rela
ation dynamics at mean field level. As a first approach to
model, we have studied in detail the caseK50, but the same
kind of analysis can be equivalently carried out in the wh
range of the parameterK @18#.

Specifically, we have showed that quantities such as
density, the compressibility, or the density-density correla
which are used in the study of liquids, can be introduced
this framework and exactly evaluated. This is convenien
the attempt to make a more suitable description of the g
transition, using the theoretical background developed
spin glasses. In this regard we note that the technique
sphericization used here could be applied and tested in o
diluted spin glass models.

The equilibrium phase diagram, shown in Fig. 1, is rath
simple. The line of discontinuous transition found in t
Ising version of the model@14,17#, in this spherical case with
K50, collapses to a single point at (m521,T50). Then
the transition form.21 is always continuous, as occurs
the spherical SK model@19#.

The study of the Langevin dynamics from a random i
tial condition has led to the same phase diagram. Never
less, this study has displayed a very interesting behavio
the glassy phase it essentially reproduces the findings o@7#
for the sperical SK model. Our exact analysis of the dyna
ics in the whole phase diagram has taken into account al
characteristic time scales of the system, which become
portant in the preasymptotic time regime. We have poin
out that a nonequilibrium regime, usually associated with
glassy phase, is possible also in the nonglassy phase for
or
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ing times lower than the characteristic equilibration time.
for the glassy phase, it is characterized by a violation
FDT, manifested by a nonlinear behavior of the integra
response as a function of the correlation. In particular,
have seen that the presence of such nonequilibrium reg
becomes more evident in the region near the point (m5
21,T50), where the system displays explicitly the patte
of interrupted aging~Fig. 6!. From an experimental or nu
merical point of view, this behavior could make rather a
bigous the onset of the glassy phase if the system is pro
on restricted time scales.

APPENDIX A: STUDY OF THE EQUILIBRIUM SADDLE
POINT EQUATION

Here we carry out a detailed analysis of Eq.~5!. The
equilibrium solutionzs can be readily found in some simpl
limits. For m→` one can neglect in Eq.~5! the term 1/(z
12bm) so as to recover the case of the spherical SK mo
@19# with solution zs511b2 for T.1. In the limit T

FIG. 7. Tx11 vs C11 andTx12 vs C12 for different values oft8,
with T5.5 andm50. Notice that for largert8 the curve approache
the asymptotes given by Eq.~41!, corresponding to the two large
time regimes described in the text.
1-10
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→Tc(m)1 we obtain at the leading orderzs22/Tc(m)
.1/Tc(m)3@T/Tc(m)21#2 with mÞ21. Finally, a zero-
temperature expansion gives zs.22bm111(2m
2Am221)/b with m<21.

Now we study Eq.~5! for z varying in the complex plane
since this is required during the discussion of the dynam
Equation~5! is thus equivalent to

~z22b!~z12b!5 f ~z!2, f ~z!5z22b2S 12
1

z12bm D ,

arg~z22b!1arg~z12b!52argf ~z!, ~A1!

with argze@0,2p@ . The first of Eqs.~A1! gives rise to an
equation of third degree:

C~z!5z32A2z1A1z2A05~z2a1!~z2a2!~z2a3!50,
~A2!

where

A25a11a21a3521b224bm,

A15a1a21a1a31a2a354~bm!226bm24b3m12b2,
~A3!

A05a1a2a35b2~122bm!214b2m2.0.

Furthermore, one can find the following identity:

~a122b!~a222b!~a322b!

5@2b~b1bm!22~b1bm!2b#2>0. ~A4!

The previous relations can be used to get informations ab
the ak corresponding to a given choice ofT and m. For
example, from the zero-temperature expansion ofzs valid for
m<21, we obtain those ofa2 ,a3 : a2.22bm111(2m
1Am221)/b, a3.b212m/b. However, in order to carry
out a complete analysis of the possibleak , we proceed solv-
ing Eq. ~A2! numerically. Let us now give the results of ou
numerical calculations. The planem-T can be divided in
various regions, as shown in Fig. 8. We have~1! a1 ,a2 ,a3
real with a1 ,a2 ,a3.2b in the regionsAi ( i 51,2,3,4); ~2!
a1 real, a2 ,a3 complex with a1.2b in the regionsBi ( i
51,2); ~3! a1 ,a2 ,a3 real with a1.2b anda2 ,a3,22b in
the regionsCi ( i 51,2,3,4).

Furthermore, in the pointQ5(2A2/2,A2/4) the three
roots coincide: a15a25a356. Along the lines l i ( i
51,2,3,5,6) one hasa25a3, while for l 4 and in the zero-
temperature limit withm<21: a15a2. In order to be a
solution of Eq.~5! one ak has to satisfy also the second
Eqs. ~A1!. Here is the list of such solutions in the variou
regions of the phase diagram:
04610
s.

ut

Regions Solutions of Eq.~5!

C3 zs.2b,22bm a2 , a3,22b,22bm
l 2 zs.2b,22bm a25a3,22b,22bm
A1 zs.2b,22bm 2b,a2,22bm
C1 zs.2b,22bm a2,22b,22bm
A2 ,A3 ,B1 ,l 1 ,l 5 zs.2b,22bm
C4 a2 ,a3,22b,22bm
l 3 a25a3,22b,22bm
C2 a2,22b,22bm
A4 ,B2 ,l 4 ,l 6 None

~A5!

APPENDIX B: COMPUTATION OF G AND OF THE
DENSITY IN THE CASE OF DEGENERATE ROOTS

Here we discuss briefly the computation of the functio
G(t) andd(t) when the third-degree polynomialC(z) has no
distinct roots~lines l i in Fig. 8!. Since the equilibrium solu-
tion zs is never degenere, we do not find qualitative diffe
ences with respect to the no-degenerate case; in partic
the long time behaviors ofG andd are unchanged.

First we consider the case of one doubly degenere root
it be, for example, a25a3 and thus C(z)5(z2a1)(z
2a2)2. Computing the inverse transform of Eq.~24!, Eq.
~25! has to be replaced by

FIG. 8. The various regions of the planem-T with respect to the
rootsak (k51,2,3). The characteristics of the roots in the vario
regions are described in the text. The solid lines (l i i 51, . . . ,6) are
defind by the vanishing of the discriminant of Eq.~A2!, namely,
1
4 (2

2
27A21

1
3 A1A22A0)21

1
27(A12

1
3 A2

2)350. The dotted lines
are given by Eq.~6! for m,21.5 andm>21. Finally, the dash-
dotted line is given byT5(12m)/(m21.5) for 1<m,1.5. The
two insets show an enlargement of the regions around the poinN
.(20.74,0.34) andP.(1.22,0.82). Notice, in particular, the exis
tence of the very narrow regionsA4 ,C3 ,C4.
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G~ t !5f11
P ~a1!e(a1 /b)t2bf11

Q ~a1!E
0

t

e(a1 /b)(t2u)
I 1~2u!

u
du

1f21
P ~a2!

t

b
e(a2 /b)t2bf21

Q ~a2!

3E
0

t

e(a2 /b)(t2u)
~ t2u!

b

I 1~2u!

u
du1f22

P ~a2!e(a2 /b)t

2bf22
Q ~a2!E

0

t

e(a2 /b)(t2u)
I 1~2u!

u
du, ~B1!

where f11
P (a1)5P(a1)/C8(a1), f11

Q (a1)5Q(a1)/C8(a1),
f2l

P (a2)5(dl 21/dzl 21)@P(z)(z2a2)2/C(z)#uz5a , and

2

04610
f2l
Q (a2)5(dl 21/dzl 21)@Q(z)(z2a2)2/C(z)#uz5a2

with l

51,2. Using the integral representation of the modifi
Bessel functionI 1 we find

G~ t !5e(a1 /b)tS1~a1!1e(a2 /b)tF t

b
S2~a2!1S28~a2!G

1e2tFbf11
Q ~a1!J1,a1/2b~2t !2

1

2
f21

Q ~a2!J2,a2/2b~2t !

1bf22
Q ~a2!J1,a2/2b~2t !G ~B2!

with S1(a1) given by Eq.~30!; furthermore,
S2~a2!5f21
P ~a2!2f21

Q ~a2!S a22Aa2
224b2

2
D 5H @~a212bm!22b2~a212bm21!2#

1

a22a1
if a2 satisfies Eq.~5!

C~a2!

a22a1
50 otherwise,

~B3!

and the integralsJk,c(t) for k51,2 are defined by

Jk,c~ t !5
1

pE21

1 A12x2

~c2x!k
e(x21)tdx. ~B4!

Notice that the integralJ1,c(t) coincides with that defined by Eq.~26!; furthermore,J2,c(t) is related toJ1,c(t) by the relation
J2,c(t)52(]/]c)J1,c(t). If a2 does not satisfy Eq.~5!, the whole coefficient ofe(a2 /b)t vanishes sinceC(a2)5C8(a2)50.
The density is found to be

d~ t !512
T

2G~ t !
H S~a1!

a1/2b1m
~e(a1 /b)t2e22mt!1

S2~a2!

a2/2b1m F t

b
e(a2 /b)t2

e(a2 /b)t2e22mt

2b~a2/2b1m! G
1

S28~a2!

a2/2b1m
~e(a2 /b)t2e22mt!1

f11
Q ~a1!b

a1/2b1m
$e2t@J1,a1/2b~2t !2J1,2m~2t !#2e22mt@ J̃1,a1/2b2 J̃1,2m#%

2
f21

Q ~a2!

2~a2/2b1m!
Fe2tS J2,a2/2b~2t !1

J1,a2/2b~2t !2J1,2m~2t !

a2/2b1m
D 1e22mtS J̃2,a2/2b1

J̃1,a2/2b2 J̃1,2m

a2/2b1m
D G

1
f22

Q ~a2!b

a2/2b1m
$e2t@J1,a2/2b~2t !2J1,2m~2t !#2e22mt@ J̃1,a2/2b2 J̃1,2m#%J , ~B5!

where J̃k,c5Jk,c(0); one has, in particular,J̃1,c5c2Ac221. We note that the long time behavior ofJk,c(t) is given by
Jk,c(t).1/A2pt3(c21)k; since it can be shown that

b2f11
Q ~a1!

a122b
2

b2f21
Q ~a2!

~a222b!2
1

b2f22
Q ~a2!

a222b
5

d

qEA
2

,

one recovers the final results of the Eqs.~32a!,~32b!, valid in the spin glass phase.
Finally, let us consider the casea15a25a3 ~point Q in Fig. 8!: C(z)5(z2a1)3. One has
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G~ t !5(
l 51

3 F f3l
P ~a1!

~32 l !! ~ l 21!! S t

b D 32 l

1
bf3l

Q ~a1!

~32 l !! ~ l 21!! E0

t

e(a1 /b)(t2u)S t2u

b D 32 l I 1~2u!

u
duG , ~B6!

wheref3l
P (a1)5(dl 21/dzl 21)P(z)uz5a1

, f3l
Q (a1)5(dl 21/dzl 21)Q(z)uz5a1

, l 51,2,3. Then, using the integral representa

of I 1, one gets

G~ t !5e(a1 /b)tF1

2 S t

b D 2

S~a1!1S t

b DS8~a1!1
1

2
S9~a1!G1e2tFf31

Q ~a1!

4b
J3,a1/2b~2t !2

1

2
f32

Q ~a1!J2,a1/2b~2t !

1
1

2
bf33

Q ~a2!J1,a1/2b~2t !G , ~B7!

where

S~a1!5f31
P ~a1!2f31

Q ~a1!S a12Aa1
224b2

2
D 5H ~a112bm!22b2~a112bm21!2 if a1 satisfies Eq.~5!

C~a1!50 otherwise,
~B8!

and the integralsJk,c(t) are defined by Eq.~B4! for k51,2,3. In particular, one hasJ3,c(t)5 1
2 (]2/]c2)J1,c(t). The coefficien

of e(a1 /b)t vanishes sinceC(a1)5C8(a1)5C9(a1)50. The density is

d~ t !512
T

2G~ t ! H f31
Q ~a1!

4b~a1/2b1m! Fe2tS J3,a1/2b~2t !1
J2,a1/2b~2t !

a1/2b1m
1

J1,a1/2b~2t !2J1,2m~2t !

~a1/2b1m!2 D
1e22mtS J̃3,a1/2b1

J̃2,a1/2b

a1/2b1m
1

J̃1,a1/2b2 J̃1,2m

~a1/2b1m!2 D G2
f32

Q ~a1!

2~a1/2b1m!
Fe2tS J2,a1/2b~2t !1

J1,a1/2b~2t !2J1,2m~2t !

a1/2b1m
D

1e22mtS J̃2,a1/2b1
J̃1,a1/2b2 J̃1,2m

a1/2b1m
D G1

f33
Q ~a1!b

2~a1/2b1m!
$e2t@J1,a1/2b~2t !2J1,2m~2t !#2e22mt~ J̃1,a1/2b2 J̃1,2m!%J ,

~B9!

whereJ̃k,c5Jk,c(0). From Jk,c(t).1/A2pt3(c21)k and

1

2

b2f33
Q ~a1!

a122b
2

b2f32
Q ~a1!

~a122b!2
1

b2f31
Q ~a1!

~a122b!3
5

d

qEA
2

one gets again the final results of Eqs.~32a!,~32b!, valid in the spin glass phase.
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