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Dynamics and thermodynamics of the spherical frustrated Blume-Emery-Griffiths model
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We introduce a spherical version of the frustrated Blume-Emery-Griffiths model and solve exactly the statics
and the Langevin dynamics for zero particle-particle interactids Q). In this case the model exhibits an
equilibrium transition from a disordered to a spin glass phase, which is always continuous for nonzero tem-
perature. The same phase diagram results from the study of the dynamics. Furthermore, we note the existence
of a nonequilibrium time regime in a region of the disordered phase, characterized by aging, as occurs in the
glassy phase. Due to a finite equilibration time, the system displays in this region the pattern of interrupted
aging.
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I. INTRODUCTION wheres;=*1, nj=0,1, u is the chemical potential, anyj;
are quenched Gaussian interactions having zero mean and
Many important features of spin glass models at mearvariance[Jizj]fllN [15]. Essentially the model consists of a
field level have come out by studying their relaxional Lange-lattice gas in a frustrated medium where the particles have an
vin dynamics from a random initial conditiofil—9]. The internal degree of freedom, given by their spin, which may
structure of the dynamical equations for the correlation andccount, as an example, of the possible orientations of com-
response functions has reaveled some analogies with othplex molecules in glass forming systems. These steric effects
types of complex systems in which the disorderigriori are indeed greatly responsible for the geometric frustration
absent: at equilibrium the dynamics becomes formally idenappearing in glass forming systems at low temperatures or
tical to the mode coupling theo§ICT), which is the main  high densities. Besides that, the particles interact through a
approach to the supercooled liquids near the glass structurpbtential depending on the coupling In particular, forkK
transition[10]. Thus there have been strong feelings that the=0 one recovers the Ghatak-Sherrington mqgdél and for
two types of systems are deeply connected; in the glasses &= —1 the Ising frustrated lattice gas modép]; this last
effective disorder is self-induced by the slow dynamics ofcase is related to the problem of the site frustrated percola-
the microscopical variabld2]. tion [22] and has also been used in the presence of gravity to
For spin glass systems, the dynamical equations haveescribe granular materia]& 3]. However, as found by the
been studied also in the low temperature pH&sed]. These standard replica theoryl4,17], the model does not display
works provide a suggestion to extend the MCT below thesubstantial differences by varyir§. The phase diagram in
glass temperaturil1]. One of the main result has been thatthe planeu-T shows a critical line separating a spin glass
for these temperatures the system never reaches the equilipphase from a disordered one; the transition is continuous for
rium, but rather displays an off-equilibrium behavior wherelarge ., as for the standard Ising spin glass£1), up to a
the dynamics depends on the whole history of the system ugiven valueuj; below which it becomes discontinuous; in
to the beginning of its observation and is characterized byhis region the Parisi solution has been obtained only re-
the loss of validity of typical equilibrium properties, such as cently in[17]. Moreover, a dynamical treatment of the model
the time translational invariand@Tl) and the fluctuation- s still lacking.
dissipation theorentFDT). One can thus establish contact \We propose a spherical version of the frustrated BEG
with  some nonequilibrium experimental observations,model, which allows a complete analysis of its equilibrium
namely, the slow relaxations and the aging phenomena whicproperties and even of Langevin dynamics. In this paper we
are observed for real spin glasses and many other complesudy this model folkK =0 leaving the general case to future
systemg 9]. investigations[18]. We find an equilibrium transition to a
Despite the cited resemblance, spin glasses are micrgpin glass phase for=—1, which is always continuous,
scopically quite different from liquids and thus not suitable|ike in the spherical SK moddlL9], except foru=—1 and
to their description. Recently, to make stronger connectiong =0 (see Fig. 1 Furthermore, we investigate the Langevin
with liquids, some models have been introduced which comgynamics of the various two-time functions and of density in
bine features of spin glasses and the lattice gas. Being cofhe whole phase diagram. We get exact expressions of these
stituted of particles, they allow to introduce the density andquantities; they are, in generaL rather Comp|exy depending on
other related quantities which are usually important in theseveral characteristic time scales whose number changes in
study of liquids. In this regard we consider the frustratedihe various regions of the phase diagram. In particular, the
Blume-Emery-Griffiths(BEG) model [14,17, which is @ |argest of these times is found to represent the characteristic
quite general framework to describe different glassy systemsquilibration time of the systenr,,. In the nonglassy phase
Its mean field Hamiltonian is this is finite and for waiting timet' > 7, the two-time func-
K tions obey TTI and FDT. This is no more true for<rq,
H=->, Jysinisin = > ninj_MZ n, (1) the system being still out of equilibrium. By studying this
i< i<] i regime near the critical line wherg, is large, we find two

1063-651X/2002/6@})/04610114)/$20.00 66 046101-1 ©2002 The American Physical Society



A. CAIAZZO, A. CONIGLIO, AND M. NICODEMI PHYSICAL REVIEW E 66, 046101 (2002

)_1 . where
12} S1i=Si, Si=S1i,
: L =4
[ P 1
0.8 _ 52i=5i(2ni—1), ni=§(sli32i+1), (3)
06|
[ [15]. The four-field interaction in Eq() is replaced in Eq.
04 SG (2) by four double field interactions; furthermore, the Hamil-
. tonian (2) is symmetric under the exchange of the two spin
02} fields. The overlap q=[(sin;)?]; and the densityd
L L =[(n;)];, which are two usual order parameters for a di-
R e R R R luted spin glass, now become, respectiveli(s;; + S,i)?];
/u’ and 3[{s3;Sy)+1];. So far we have just reformulated the

BEG model. Now to define our spherical version, let the
Ising constraints fall in Eq(2) and replace them by the
spherical onesZ;s3,=3;s5=N. This particular choice of
the variables to sphericize aims to obtain an exactly solvable
different behaviors of the systems far>—1 andu=—1.  model. It recovers the spherical SK modi9] in the large-

We give here a first qualitative description of them. In thew limit (s;;=s,;). Below we will consider the cadé=0.
caseu>—1 FDT still holds fort—t’<t’, so that deviations To study the model it is convenient to diagonalize the
from the equilibrium case occur only for very small values of interaction matrixJ;; (2;J;;7;,=A7;,) and work with the

the correlation. Instead, gs is close to—1, the range of variabless,, =2 7;,S.i(a=1,2); these obey the properties
correlation values in the FDT regime decreases andufor s .s,.s,.=3,s,,5,, and i JiiSaiShj= Z)\ASaxSpy - In theN

=—1 this vanishes; if,t’ are sufficiently lower thameqthe o |imit the eigenvalue densitp()\) satisfies the Wigner
correlation function scales as a powertoft. Thus, in this  gemicircle law:

region the observation of the system over short time scales
could wrongly lead to conclude that the system is in the

FIG. 1. The phase diagramvs . The critical line separating
the two phases is given by E¢) for u=—1. The transition is
always continuous except for the poini € —1,T=0).

glassy phase. Then, for a large but finitg,, the model —J4—2\?, IN[<2

follows the pattern of interrupted aging. Finally, diverges p(\)={ 27 (4)

in the whole glassy phase and the system displays essentially 0, IN=2;

the same nonequilibrium behavior of the spherical SK model

[7]. the quantitiesy;, are Gaussian variables with zero mean and

The paper is organized as follows. In Sec. Il we define th 2K7 — (Dl 1\ 11/ NK-
spherical frustrated BEG model. In Sec. lll we deal with theefnomems[”'*]J (2k=1)11/N% they are uncorrelated to

statics using the theory of large random matrices and analyztge elgl_einvalltjjesl and amoné]_tt_hemselves, apart from the ortho-
the thermodynamical properties. In Sec. IV we introduce thd'0rmaiity and closure conditions.
Langevin dynamical model and the various quantities of in-

terest. In Sec. V we solve the integral equation related to the Ill. EQUILIBRIUM PROPERTIES

spherical constraints and compute the density. In Sec. VI we _ _

discuss the dynamics in the disordered phase and, after the A. Saddle point equation

identification of the equilibration time.,, we analyze the The statics can be solved by standard techniques for

equilibrium regime (' > 7,) and the out of equilibrium one spherical models and the above properties of large random
(t'<7eg). In Sec. VII we consider the nonequilibrium dy- matriceg19]. In theN— o limit the free energy is evaluated
namics in the glassy phase.(=). Finally, in Sec. Vlllwe by steepest descent, by imposing saddle point conditions
present some conclusions. Furthermore, in the Appendices @ity respect to the two Lagrange multipliezs and z,, in-

and B we study in detail, respectively, the equilibrium saddi&oqyced by the spherical constraints. These equations just
point equation and the dynamics when this equation has deréproduce the two constraints satisfied on aver§g«§s§)\>
genere roots. =N(a=1,2). Explicitly they are reduced to only one:

II. DEFINITION OF THE MODEL

1
First of all we note that the Hamiltonigi) can be rewrit- —lz- VZ2—4pB%]1=1-
ten in terms of two new Ising spin fields; ,S,; =+ 1: 2B

zZ+2Bu’ ®)

where z=z,+Bu=2z,+Bu has to be greater than the
branch point§28,—2Bu}. This condition is satisfied by a
unigue solution of Eq(5), denoted byzg, for eachT if u
K < —1 and above a critical liné[=T¢(u), for u=—1. This
X(S81iSpi+1)— = iSyit1), 2 . . LMl .
(SySz+1) =3 Z (SuSzi+1) @ region of the phase diagram identifies the disordered phase

Jii K
H=-2> %(31i+52i)(31j+52j)_ N ;J ($1i82i+1)

i<j
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(labeled by P in Fig. L The critical line is located by 1 1 T
reaching the branch point@and is given by q=1- B 2B+ Bun) 1—.|_ ) (7)
Cc
put+l
Te(p)= w+3/2° ©  The transition at the ling=T,(w) is continuous for each

pu>—1 and discontinuous at the point& —1,T=0). In-
A detailed study of Eq(5) is given in Appendix A. Below deed the zero-temperature value gpfis d(u+1) with g
the critical line (phase SG in Fig. )1this equation is not =0 for u=—1. Note that the model could be solved using
satisfied forz>2p. The equilibrium saddle value afsticks  the replica trick, where a replica symmetric ansatz yields
at the branch point 2, and to preserve the spherical con- identical results.
straints a spontaneous magnetization arises along the eigen-
vector with eigenvalue 2. Actually, the diluted overlap

= 1[(sy,+5)2], is found to vanish when Eq5) holds and B. Free energy and related quantities

becomes justsa,, —.)%N below the critical line, i.e., The free energy per sitiecan be explicitly evaluated:
|
ZS+2BM|4 1| 2 321 ! 21|1—1 P
B AP LA Oy S By B L Sy |
At= 1 11 ®
—(ﬁ+ﬂﬂ)—|n477+E“’]Z(,B'f’ﬁ,u)‘f'z'f‘zmﬂ, SG;

it corresponds to a negative low temperature entropy whiclits plot as a function ofl is given in Fig. 3. A cusp at the
diverges logarithmically a§ —0. This pathology is typical critical temperaturd ;(x) whose height diverges in the limit
of spherical models, even in the short-ranged uniform casey— — 17 is evidentk goes to the value 1/4 for eaghin the

Now we analyze other thermodynamic quantities in ordenarge temperature limit. For zero temperatire0 for each
to characterize the system and for comparison with the Ising,  Finally the specific heat is

case[14,17. The densityd=3[(sy;S,)+1]; is given by

—oflow:
1
1_2 +2B8u’ P
d= ) ©)
1-———, SG;
2(B+Bu)

it is represented in Fig. 2 as a functionTofor several values
of w. In the large-temperature limi approaches the value
1/2 for eachu. For T=0 we getd=q=3(u+1) with d
=qg=0 for u=—1; note that, unlike the Ising version, there
is no interval ofu values where 82d<<1. In the spin glass
phase a partial freezing takes plack<{(q<<1), except at
zero temperature where the system is fully frozel+=(
=1). For u— the model approaches the spherical SK

limit [19]: T.=1, d=1, q=1—T. The compressibilityk o2l / 7
=(1/8)(dd/dw) is found to be

0.4 |

' L % a ; 5
2( ! Zs+ 218/1’) p T
k=1 (zs+ 23#)2< 1— ;) + /Z§—4,82 FIG. 2. The densityd vs T for several values of.. The inter-
z+2Bup section of the curves with the dotted line locates the critical tem-
1 peratureT (w). Thus, the initial straight part of the curves faor
_ SG; >—1 corresponds to temperatures for which the system is in the
| 2(,8-I—,8,u)2 glassy phasgbottom of Eq.(9)]. In the largeT limit d goes to the

(10 value 1/2 for eachw. Note also that at zero temperatute 1 for
pu>—1 andd=0 for u<—1.
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1
[72_ 4732 2lq_ - _ 2
) Ze zs—4B% (zs+ 2Bu) (1 2+ 28u +Bu|—(zs+2Buw)
c= 2 o, 1 YV (11)
(zs+2Bw) (1 2 ¥ 28 ++zE—4pB
1, SG;
|
it presents a cusp at the transition fer>— 1, while for T 1 z
=0, it is discontinuous since= 3 for u=<—1 (Fig. 4). The Pf \? = ——=—-1], P
largeww limit is given by c= 32+ 1/2T2 for T>1. XSG:E Jhooh. =12 \/25_432
A N/ h=0 - SG:
C. In the presence of a magnetic field (13

Adding to the Hamiltonian(2) a magnetic-field term,
—2;(h/2)(s3;+ i), the saddle point equation is modified
by addingf d\ p(\)(8h,)?/(z— B\)? to the left hand side of
Eq. (5). Assuming a uniform fieldh;=h, one can replacbf
by its average valub?. Thus one finds that fdi#0 there is
no transition, since in this casg never reaches the branch
point 2.

Let us now compute the diluted susceptibilities in zero

coming from high temperatures it diverges at the critical line
as 1JT—T.(u)] and remains infinite in the whole frozen
phase. For zero temperature it is given byc=3
(—plJu?=1-1) for u<—1. The largex limit is xsg
=1/T?—1 for T>1.

IV. LANGEVIN DYNAMICS

field. The linear one obeys the diluted Curie law in the dis-
ordered phase and is constant Tox T(u«), so to display a

cusp crossing the critical ling-ig. 5):

Now we deal with the Langevin relaxional dynamics of
the model. Let us assume that the two spin fields evolve via

usual Langevin equations, which when projected onto the

basisA become

1
o?f ,8( 1- —)
= —|,_o= Zs+2Bu (12) ds;, [N zy(t) A
X o"h2|h 0 1 ° sG. dat \a” 2 |suntlzt s Sox+hp (1) + &0 (1)
notice that the previous result can be obtained also from the ds,, (A N Zp()
linear response theoreg=8(d—q). The zero-temperature g |2 "2 /S0t |7~ Saxthan (D) + &21(1),
expression isy=—u— Ju?—1 for u<—1. The spin glass (14)

susceptibility is given by
wherez,(t), a=1,2 are two time-dependent Lagrange mul-
N tipliers enforcing the spherical constraints,, (t) are two

0.4}

| 5
0.2 1 1

0 1 2 —|—

FIG. 3. The compressibilitk vs T for several values ofx. A
cusp is evident at the critical temperatdrg «) at least for values
of u close to—1. The height of the cusp diverges as-—1".
The intersection of the dotted line with the curves for —1 lo- FIG. 4. The specific heat vs T for several values of.. Note
cates the critical temperatuiige(u); k increases with the square of the cusp at the transition temperatdrg n) for u>—1. c=1 in
T in the glassy phasdottom of Eq.(10)]. ForT—x k, goes to 1/4  the glassy phagdottom of Eq.(11)]. In the zeroT limit, c=1/2 for
for eachu. eachus<—-1.
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> choose the initial conditions indicated previously. The dy-
namical model can be solved for aml(0); but it can be
shown that the value ofl(0) does not influence the long
time behavior for nonzsero temperature, so we take for sim-
plicity d(0)=1.

For zero external fields the dynamical model is for each
time symmetric under the exchange of the two spin fields.
Since below we will discuss the dynamics only in this case,
we can exploit this symmetry and limit ourselves to solve
Eqgs.(14) for z,(t) =z,(t). The solution is then given by

1

0.75

0.5

0.25

[e“/Z[sl)\(O)jLsz)\(O)]

1
Sa)\(t) - 2m

+ 758 #[$1,(0) = 52,(0)]

FIG. 5. The susceptibility vs T for several values of.. Note

the cusp at the transition temperatrg u) for u>—1. y=1 in t —02
the glassy phasgbottom of Eq.(12)]. In the zeroT limit y=—u + OdU WP (U)[ &1, (U) +hyy(U) + &y (U)
—JuZ=1 for u<-1.
t
external fields interacting with the fieky, , and¢,, are the +ha(u) ]+ ﬂafodu e #=9T (u)

thermal noises with zero mean and correlations

(Earn(1) €, (1)) =2T 8,6, ,6(t—1"), a,b=1,2. Hereafter

we use( ) to represent the average over the thermal noises. X[€1(u)+hyy(u) =& (u) —ha (W]}, (18
Let us now introduce the quantities of interest, namely,

the correlation function€,(t,t’) (a,b=1,2), the response

functionsG,p(t,t"), and the densityl(t): where 77,= 8, 1— 8, , and

Cap(t,t')=

1
N > <Sai(t)3bi(t')>} t
I 3 F(t)=expfoz(u)du, Z(t)=zy(t) — pu=2z5(t) — u.

19
- [ apoamsaty. as 19

As a consequence of the above symmetry, in the absence
Gap(tit) = i D &(sai(t)) of external fields the four correlation functions coincide mu-
abt™ N T sh,(t) tually, so we have to study only two of thei@;,(a=1,2).
h=0 The same occurs for the relative response functions. Notice
8(sar (D)) that when written in the original variables; and n;,
—f (N)—————h=0, (16)  Cyy(t,t") is just the spin-spin correlation function, while
shp\(t") Cqo(t,t") is a rather strange correlator made by a combina-
1 tion of spin and density variables. Instead, the density-
_ density connected correlation function, which enters in the
d(t)= E[Clz(t’tH 1]. (17 schematic version of MCT20], involves 4-spin functions in

. . the formalism of the lattice fields, ,s,:
A quite general procedure allows one to derive from Eq.

(14) closed equations for these functions as saddle point so- L

lutions of a dynamical generating functional2]. Using this , , ,
procedure one implicitly assumes the initial lattice fields Con(t,1) = AN Z [{s1i(VSai(D)s1i(t)Si(t"))
s,i(0) as random variables with a Gaussian distribution of
zero mean and variancg,;(0)spi(0)=1+2(1- 5,,)[d(0)

—1] (the overbar stands for the average over the random
initial conditiong; the same is valid fos,, (0), because of
the rotational invariance of the Gaussian distribution. How-
ever, in our case these functional techniques can be avoidedpwever, since the model is quadratic, this quantity is
as much as in Ref$3,7]. Due to its linearity, the Langevin readily related toC;, and we getCp,(t,t")=3[Cy(t,t")?
system(14) can be explicitely solved for given noises, thus + C(t,t")?].

the various dynamical quantities can be evaluated averaging From Eg. (18), taking into account the previous initial
over the noises and the eigenvaluesin the following we  conditions, we find fot=t" and zero external fields

—(s1i(t)sai(t))(s1i(t")szi(t"))]]| . (20

J
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2

JLOT ()

+Tftdu
0

naefu(tﬂ’fzu)

+f>l“(u)

Tt | 7 |

L | t—t 2

L (t+t)

Cra(t,t!) = .t

t+t'—2u

: (21a

Gualtt')=

(21b

In these formulas$, is the modified Bessel function of order
1; we have used thafdAp(\)eM=1,(2t)/t. Instead, the
functionT'(t) is still indeterminate; it can be computed self-
consistently, as a solution of the integral equation obtained

by enforcing the spherical constrai@t(t,t)=1:

(t)= |1(t2t) +Tftdu |1(2t(t;U)) +e—2u(t-u)
o _

T'(u).
(22

Taking into account Eg22), one can get the following use-

ful expressions foC,4(t,t") andd(t):

r t+t’
Cpat,t))= 2 1425 [d i 1}
T TOre) " 2
—ZTJ(tH,)/Zdu [(t+t"—2u)
t’ t+t'—2u
Na _ . I(u)
Ja p(t+t"—2u)
T2° NEEie (233
2
T ! 2u(t—u)
dt=1——Jdue‘”‘ I'(u). 23b
0=1- 1), (w. (@3

We note from these formulas that the behavioiCaf(t,t")

PHYSICAL REVIEW E 66, 046101 (2002

gram. We find that the structure of the functibiit) is re-
lated to the general roots of E(p), discussed in detail in
Appendix A.

Taking the Laplace transform of EqR2) and using the
convolution theorem, after some algebra we Pgs) in the

form:

F(e)=g PBD _ SQUBS) (5= VP-4 } 24

C(Bs) " C(Bs) 2 ’
where P(2)=(z+2Bu)? Q(2)=(z+2Bu)(z+2Bp—1),
andC(z) is a third degree polynomial given by Eg\2). We
see thatl'(s) is written in terms of rational functions and
(s—\/s?’—4)/2 which is the Laplace transform of(2t)/t;
thus in this form we can take readily the inverse transform. If
C(2) has distinct roots, (k=1,2,3) this is given by
3

F(t)=k§:l [fﬁkp(ak)e(ak’ﬂ)t

t
_ﬁfﬁkQ(ak)f e(ak/ﬁ)(t_u)ﬁdu , (25
0
where ¢ (a,) = P(a,)/C’ (ay) and ¢d(a,) =Q(a)/C’ (ay)
with k=1,2,3. The case of degenere rogisesl; in Fig. 8
can be treated analogously and presents no qualitative differ-
ences; so we leave it in Appendix B.
The integral appearing in Eq25) can be manipulated
using the integral representation of the modified Bessel func-
tion I4; we obtain

t l1(w
je‘c“’ 1; )dw=c—m—e‘(°‘1)‘\]c(t),

0

11 J1-x?
s [ axi e, (26)
m)—-1 C—X
wherec is, in general, complex but]—1,1. For long time
the integrall.(t) can be evaluated analytically by a suitable
expansion. Fot>1/c—1| we get

Je(1) ! 1 3 ( ! + 1” (27)
S 2wt(c-1) 2t\c—1 4/
Whenc is real and close to 1, a new time regime exists for

1<t<1/(c—1). In this regime we find a different behavior
of the integral:

at large times can be deduced from thai'o&ndd; instead - \E — — —1)— i
d(t) takes contributions fronr also at low times. However, I 7t 1=ymt{e-D+2te—1) 8t|’
we will be able to compute exactly(t) for each time and |n particular, in the limitc— 1" this regime holds for each
then alsod(t). In the limit u—o one can neglect the last {1 and one hag,(t)=2/xt. Note that the leading term
termin Eqs(21a—(23b); henced(t) =1, the two correlation Eq. (27) or Eq. (28) is enough for the following discus-
functions and the two response functions coincide, recoveijon: we retain the higher-order terms in the expansions only
ing the case of the spherical SK modél. for the numerical calculations of the following section.

Let us come back td'(t). Taking into account of Eq.
(26), it can be rewritten as

(28)

V. COMPUTING THE FUNCTION I' AND THE DENSITY

First, we getI'(t) solving the integral equatiof2) by s
Laplace transform techniques. Followirid], one could T(t)= 2 [S(ae@ /Pty ¢S(ak)ﬁe2t‘]ak/2ﬁ(2t)]a
solve Eq.(22) using a suitable expansion which is valid in K=t 29
the spin glass phase. However, we proceed by a different (29
technique in order to obtaif'(t) in the whole phase dia- where

046101-6
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(ax+2Bu)?—pA(ay+2pu—1)>

if a, satisfies Eq.(5)

a— Vag— 482 C'(ay)
S<ak>=¢k'°<ak>—¢8<ak>(—“ > o )= k (30
C(ak) .
= otherwise.
C'(ay)

OnceT'(t) is known, the functiord(t) can be also exactly
evaluated. Replacing E§29) in Eq. (23b) we find

T 3
2I'(t) k§=:l (
$(a)B
* adzpt | € Hagzs(20=3-,(20]

2B

S(ay)
ak/ZB +un

dit)y=1- (e(aklﬁ)t_e*ZMt)

_ e—2,ut

+utui-1

i

From Eq.(30) we see that the exponentials with roais
not satisfying Eq(5) play no role. To know what and how
many exponentials make dp(t) andd(t) in the different

31

VI. DYNAMICS IN THE NONGLASSY PHASE

Now we specialize the general expressions of the dynami-
cal quantities obtained previously for the case of the non-
glassy phase. It is convenient to put in evidence the large-
time dominant exponentiale*/A! in Eqg. (29, I'(t)
=el®/AltO(1),

3

Q(t)=S(zg) + e*z“fk§_}l BR(a)Ja, 12p(20) + € 2 72S(ay)

+e 2U35(a,) (33

and then replac€(t) in Egs.(23a, (23b) and(21b). We get
the following exact expressions:
o)

-

V(D) Q(t")

t+t’

2

Cla( )

regions of the phase diagram, one has just to consult the

table(A5) and Fig. 8. Computing the large-time limit bf{t)
andd(t), we find only a few different behaviors which we
list now. For zero temperature we hal/gt)=1,(2t)/t and
d(t)=1 for eacht and w. In the spin glass phase and for
T=T.(x) we retain in Eqs(29) and(31) only the dominant
exponentiale?'. EvaluatingJak,zﬁ(Zt) andJ_,(2t) by the

leading term in Eq(27), and then using the identitA4), we
get after some algebra

e & Bl e d
I'(t)= —, (32
Vs R e

3 2 ,Q
B2h(ay)
AO=1"3F 0 & et 284
X e 2B + ! =d 32b
At ac2p vt | ¢

where qg, is the Edwards-Anderson parameter coinciding
with Eq. (7) andd is the equilibrium density given by the
second part of Eq(9). At the critical transition line, only a
slight difference occurs with respect to the previous case: th
integraIJal,zﬁ(Zt)=J1(2t), given by Eq.(28), prevails over
the others for large. Then using thatﬁ?(Z,B)=1 one has
['(t)=pBe?/\/«t. Finally, in the nonglassy phase we get
readily I' (t) = S(zs) e%/P!, wherez, is the equilibrium so-
lution of Eq. (5). Correspondingly, the density tends to its
equilibrium value given by the top of E¢9).

e w(1+1/7)

|

t+t
l1(w)
w

t+t'—w
2
t+t’

e[ty
Gqa(t,t") = W—e

4 a o (t-t))/7’
2

: (343

(t—t")(1+1/7)

(34b)

S(zs)

dty=1-~ 2J2B+ p

(1 e—2t/7 )

2Q(t)|

S(az)
a2/ZB + M

S(ag)
a3/2ﬁ+ IU,
o) B
ak/2B+ y

(e72t/7'2_ e72t/7')

3
X e72t/73_872t/7")+
( &

e

x| e 2, pp(2) — - (20)]—e 2

2B

the previous formulas we have

X

+,u,+\/,u,2—l ] (340

In introduced the
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characteristic times: valid in the spin glass phase that we discuss below. \Whgn
is small, as usually occurs in the nonglassy phase, the equili-
-~ 1 ;o 1 bration is fast and the time rangé< ., represents just a
T zd2p—1" T zd2B+u’ short initial transient. Howevet;,, can be made arbitrarily
large as soon as one approaches the critical line, or for very
1 1 low temperatures angg<—1; in such case a true nonequi-
Tz:ma Ta:m- (39 librium regime appears, although the system is in the non-

glassy phase.
We recall that the exponentials with the characteristic times A quite useful way to characterize the relaxation process
5,73 are absent in the regions of the phase diagram, whefé by plotting the integrated responsey,(t,t’)
the relative roots,,a; do not satisfy Eq(5). In this regard =f§,Gla(t,U)du, multiplied by the temperatur€,
see the tabl€A5) and Fig. 8.

l1(w) o o(1+1/7)

Q(t—w)
Vam %7

as a function of the correspondent correlation function
Cia(t,t"), given by Eq.(34a), for different values ot’. At
equlibrium FDT implies a linear shape of these curves ac-

1(t-v

A. Equilibrium dynamics Txaa(t,t) ﬁfo do
From the discussion done in Sec. Ill we deduce that

and 73, if present, are in any case lower than the largest +
betweenr and 7. This implies that the largest of the char-
acteristic timeg35) is given byr,,=maxr,7’}. In particular,
one hasreq=7 oOr 7' according tou>—1 or <—1, while
for u=—1, 7eq=7=17". The timer,, can be identified as
the characteristic equilibration time of the system. In fact for . ) b :
waiting timest’ > 7, the density(34¢) is practically con- co_rdl_ng to the relat|orTX,1a—1+25a’2(d—1)—Cla, while
stant at the equilibrium value given by the top of Eq(9), ~ hiS IS no more true fot’<7e,. We can thus analyze the
while the two-time functiong34a,(34b) obey TTI and FDT changeover from the equilibrium to the nonequilibrium re-

E —ol7’

2

TG,.(t—t')=3dC,.(t—t')/ot'), being given b gime by monitoring how the curves deviate from this straight
(TG(t=t) E O g9 y line. We find two different behaviors of the system along the
Cra(t—t")=1+25,,(d—1) critical line. In order to describe them, for simplicity we

focus on the moda=1.
1 t—t’dw l1(w) JRENCRS TR S LY For T close toT.(u) with « not so close to the value
0 1) —1 (see Fig. 1, one can readily show that fdrlarge but
2 1( Fig. 1, dily sh hat fdrl b
) ) sufficiently lower thanr,, the function()(t) follows its criti-
:e,(t,tr),,Juur(t—t ) LT vy cal behavior; one has indeed
B 2B ’
8
(363 Q)= \[;+ e-zt’TJHl,T(zt)),
’ Il(t_t’) —(t—t’ /7 Na -t/

Gia(t—t/)= —— —e ("D Zre (7O, S0 thatQ (t)= B/t for t< /8, which is just the critical

(36b) behavior. The time dependence Qf would allow one to
have aging in the correlation function. However, in this case

To obtain the second line we have used Ezf). Note that the plot Ty, vs Cy; does not give much evidence of the
the equilibrium correlation function8,,(t—t') decay expo- nonequilibrium regime and we do not report it. In fact, for
nentially to zero with the characteristic relaxation time given€achu>—1 and finite temperature, eventit’' <o, FDT
just by 7eq. For u>—1, 7,=r diverges at the critical line, still holds Whent—t"<t’: the functloncll(t,t’) follows its
as 7=2T(u)*[T—T.(n)]3 signaling critical slowing eqy|llbrlum expre35|orﬁ3§a a}nd the plqt starting out at the
down; this implies that for each>—1 the dynamical tran- Point (C1;=1Tx1;=0) is linear again. Ift'>7"=1/(1
sition temperature coincides with the static one, as occurs ir 1), one hasCyy(t—t")=1/8y2/m(t—t") so that this re-
other continuous model§6—8]. Actually, the integral gime extends up to small values of the correlation; thus small
Ji1,(t—1"), given by Eq.(27) or Eq. (28), provides a deviations from the straight line occur only in the last part of
power law correction to the exponential decay; it goestas (the plot until the end point@;,=0,Tx;,=1) is asymptoti-
—t")"32for t—t’>ror as ¢—t') " 2in the critical regime  cally reached.
for t—t’<7. Finally, 7, diverges also foT—0 andu< Instead, for low temperatures apdnear—1, the range
—1 asTee=1'=2p. of Cy; values in the FDT regimet(-t'<t’) decreases and
for zero temperature it disappears bejng=0 for eacht,t’.

B. Nonequilibrium dynamics One finds foru=—1 and lowT,

For waiting timest’ lower thanr, the system is not yet 1
in equilibrium and the dynamics is described by E@a— Qt)y==+e 27—
(340); these equations are formally analogous to those Vamt3
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7 of C,; values. The behavior now described is similar to that
. recently found in the one-dimensional Ising model with
Glauber dynamicf21], but in that case a less trivial shape of
Tx(C) is obtained.

Finally, moving along or slightly above the critical line
with u=—1 for a fixed t’=50, one obtains the curves
shown in theinsetof Fig. 6. We note that their global shape
is unchanged, but now the initial straight part corresponding
to the FDT regime gets longer the larger

62 04 06 08

CH

0.2 VII. NONEQUILIBRIUM DYNAMICS IN THE GLASSY

PHASE

0 62 04 06 O.SC ! The analysis of the nonequilibrium dynamics in the glassy
11 phase is quite similar to that of the spherical SK model dis-
. o cussed in7]. As above, we can put in evidence the dominant
_ FIG&G‘ T V_S_C“ for different values/ oft ’_W't,hx Teq=28  exponential in Eq(29), which now ise?, and then replace
=2x10° and p=—1. We have takent'/7eq=10"" with X = pyyin Fgs (233, (23b) and(21b). The expressions we get

=1,1.5,2,2.5,3,3.5 for the curves, respectively, from the right to th e . _
left. The plot illustrates the nonlinear dependence of the integrate% r these quantities can be obtained by HGda—(349 for

responsd x,; as a function ofC,; whent’ is lower thanr,. If the (2)=0 and

conditiont’/7¢q,t/7,q<1 is realized,Cy; obeys approximately the

zero-temperature scaling form?Zt’/t)¥* and y,; is almost van- ) 1 1 1
ishing, as the system was in the low temperature glassy phase. TheT= %, 7T = m Tzzm, Tszm-
plot follows this shape for a range which is larger, the smaller the (38)

value oft'/7.qis. Then, as a consequence of the finite equilibration
time, the plot must raise again in order to reach the poly; ( . o . .
=0Tx1;=1); thus the final upward bending of the curves corre- 1 "€ Systeém is out of equilibrium on each time scale s
sponds to interrupted aging. The inset shows the curves obtained #§ infinite. Even if the roots, a5 satisfy Eq.(5), the char-
keeping fixedt' =50 and varyingu around—1. We have taken acteristic timesr, and 75 are very smalflower than) and,
w=—1+10"% with x=2,2.5,3,3.5,4 for the curves, respectively, in practice, well inside the glassy phase, one [i¥&)
from left to right. The initial straight part of the curves correspon- :(1/\/417t3)(d/qEA) and d(t)=d, where qgs is the
dent to the FDT regime increases wijih Edwards-Anderson parameter coinciding with E. andd

_ the equilibrium density given by the bottom of E(P).
with 7=2; thus fort<(r*/16m)" one recovers the zero- Apout the two-time quantities, for large times we distinguish
temperature behavid® (t)=1/\4=t3. It may also be shown the following two regimes.
that the same behavior occurs far<—1 whent<In g/2 (1) FDT regime fort=t’ with t—t’<t':
(=p—1). In Fig. 6 we show the curve§yq; vs Cq4 for
varioust'/ 7., obtained in the casg=—1 and lowT so that

Teq= 2% 10%. The model exhibits in this case the pattern of Cra(t=t")=1+26,5(d~1)

interrupted aging. I is nonzero, i.e.7.q=24 is finite, the 1 froy I1(w) nae—w/'r'
larget limit of Cq4(t,t") and Ty IS given, respectively, by —— 1) e “+

0 and 1. Therefore all the curves starting out at the point BJo @ 2
(C11=1,Tx11=0) must end up in the same poinC{; J(t—=t") g L
=0,Tx11=1). The dependence d"/ 7., enters on how the =Qgat + 2—e*(t*t I (393
initial and final point are joined. If'/7,,>1 a linear plot is B B

obtained, as already said.tlf/ 7,4<1, then the plot covers a

very short part of the straight FDT line and then falls below l(t—t") M o
this line. In particular, if the condition’/7eq,t/7eq<1 is Ga(t—t)=————e "1+ ?e‘(“‘ e,
realized, C,; obeys approximatively the zero-temperature t=t

scaling form 23(t'/t)%* and y,; is almost vanishing. The

plot follows this shape for a range which is larger, the

smaller is the value df' /7.4. Looking at these pieces of the where g, is the Edwards-Anderson parameter coinciding
curves only, one could wrongly conclude that the system isvith Eq. (7) andd is the equilibrium density given by the
in the glassy phase. But, adecomes larger than,,, the bottom of Eq.(9). In this regime the properties TTI and FDT
plot must rise again in order to reach the point,{ are satisfied. In the large-t’ limit the two correlation func-
=0,Tx,;=1); thus the final upward bending of the curves istions have a power law decay to the valge, as Cy,(t

a consequence of a finite equilibration time and correspondst’) —qea=(1/8) y2/m7(t—t"); the reaching ofgg, deter-

to interrupted aging. In the limiting casg,= aging holds  mines the end of this regime.

for all time and the plot obeyg,,=0 over the entire range (2) Aging regime fort>t’, A=t'/t=0:

(39D
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A 34 scaling. For spin-glass-like models, in this regime FDT can
Cra(t,t')=2%2———qea=2"2%qc,, (409 be generalized toTG(t,t')=X(C(t,t")[aC(t,t")/at'],
(1+N) where X is the fluctuation-dissipation ratio assumed to de-
pend on time arguments only through and the function
—3/4
G(tt)= A =32 1 N 34302 ) o
tal®h 2 (1-))32 = : X(C) is characteristic of the modgb—8]. In our case from

(40b) Egs.(40a,(40b) we getX;,(C1,)=0, as in Ref[7].
Figure 7 shows an example of pl®jy;, vs C,, Obtained
Here FDT and TTI are violated. The two correlation func- when the system in this phase. For largeithe curves ap-
tions coincide and have a slow decay to zero obeying poweproach the asymptotes

1+25312(d_1)_cla, qEA<Cla<1+25a,2(d_l)

= 41
1428, (d—1)—Gea,  0<Cia<Gen, 4

TX1a

which can be derived by Eq$393,(39b and (40a),(40b); ing times lower than the characteristic equilibration time. As
they correspond to the two regimes discussed previously. Fdor the glassy phase, it is characterized by a violation of
zero temperature the FDT regime is abseq=1). FDT, manifested by a nonlinear behavior of the integrated
response as a function of the correlation. In particular, we
have seen that the presence of such nonequilibrium regime
VIIl. CONCLUSIONS becomes more evident in the region near the popat(

We have defined a spherical version of the frustrated BEG 1,7=0), where the system displays explicitly the pattern

model by enforcing spherical constraints to suitable Isin of interrupted agingFig. 6. From an experimental or nu-
) y g Sp . “merical point of view, this behavior could make rather am-

variables. The main advantage of such a model consists of i{s . .

. L ) . ; igous the onset of the glassy phase if the system is probed
relative simplicity which allows to obtain a full analytical . )

: v ; ; on restricted time scales.
solution of the equilibrium properties and of Langevin relax-
ation dynamics at mean field level. As a first approach to the
model, we have studied in detail the cése 0, but the same APPENDIX A: STUDY OF THE EQUILIBRIUM SADDLE
kind of analysis can be equivalently carried out in the whole POINT EQUATION

range of the parameté¢ [18]. Here we carry out a detailed analysis of H§). The

Specifically, we have showed that quantities such as thgquilibrium solutionzg can be readily found in some simple

o e e e mis. Fo 2 one can neglect n £ th tem Li
. y q L J- . +2Bu) so as to recover the case of the spherical SK model
this framework and exactly evaluated. This is convenient i

the attempt to make a more suitable description of the glag;slg] with solution z;=1+§" for T>1. In the limit T
transition, using the theoretical background developed for

spin glasses. In this regard we note that the technique of >~ 1
sphericization used here could be applied and tested in other —
diluted spin glass models. o8f 11
The equilibrium phase diagram, shown in Fig. 1, is rather 300
simple. The line of discontinuous transition found in the o6l % o

Ising version of the modé¢ll4,17), in this spherical case with
K=0, collapses to a single point axE& —1,T=0). Then
the transition foru>—1 is always continuous, as occurs in 0.4
the spherical SK modgL9].

The study of the Langevin dynamics from a random ini-
tial condition has led to the same phase diagram. Neverthe-
less, this study has displayed a very interesting behavior. In
the glassy phase it essentially reproduces the findingg]of
for the sperical SK model. Our exact analysis of the dynam-
ics in the whole phase diagram has taken into account all the
characteristic time scales of the system, which become im- F|G. 7. Ty, vs C,; and Ty, vs Cy, for different values ot’,
portant in the preasymptotic time regime. We have pointedyith T=.5 andx=0. Notice that for larget’ the curve approaches
out that a nonequilibrium regime, usually associated with thehe asymptotes given by E¢41), corresponding to the two large
glassy phase, is possible also in the nonglassy phase for waitme regimes described in the text.
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—T(w)" we obtain at the leading ordezs—2/T.(u)
=UTo(w)3[T/T()—1]? with u#—1. Finally, a zero-
temperature  expansion givesz=-2Bu+1+(—pu
—Ju?=1)IB with u<—1.

Now we study Eq(5) for z varying in the complex plane,

since this is required during the discussion of the dynamics.

Equation(5) is thus equivalent to

)

(A1)

(z-2B)(z+2B)=f(2)2, f(z):Z_ZB2(1_2+2,8M

argz—2B)+argz+28)=2arg(z2),

with argze[ 0,27[. The first of Egs.(Al) gives rise to an
equation of third degree:

C(z)=22—A,z+A;z—Ay=(z—a;)(z—a,)(z—az)=0,
(A2)

where
A,=a;+ay+az=2+p*—4ppu,

Aj=ajay+ajagtazaz=4(Bu)’—6Bu—4p°u+2p%,
(A3)

Ao=ajayaz=B(1—2Bu)*+4p%u*>0.
Furthermore, one can find the following identity:

(a1—2pB)(az—2pB)(az—2p)
=[2B(B+Br)—2(B+Bur)—BI*=0. (A4)

The previous relations can be used to get informations abo
the a, corresponding to a given choice af and . For
example, from the zero-temperature expansion,e@lid for
pu<-—1, we obtain those 08,,a;: a,=—2Bu+1+(—pu
+\u?=1)IB, az=p>+2ulB. However, in order to carry
out a complete analysis of the possihle we proceed solv-
ing EQ.(A2) numerically. Let us now give the results of our
numerical calculations. The plane-T can be divided in
various regions, as shown in Fig. 8. We hal¢ a,;,a,,a;
real with a;,a,,a;>2p in the regionsA; (i=1,2,3,4);(2)

a; real, a,,a; complex witha;>2g in the regionsB; (i
=1,2); (3) a;,a,,az real witha;>28 anda,,az;<—28 in
the regionC; (i=1,2,3,4).

Furthermore, in the poinQ=(—+/2/2,/2/4) the three
roots coincide: a;=a,=az=6. Along the linesl; (i
=1,2,3,5,6) one haa,=az, while forl, and in the zero-
temperature limit withu<—1: a;=a,. In order to be a
solution of Eq.(5) one a, has to satisfy also the second of
Egs. (Al). Here is the list of such solutions in the various
regions of the phase diagram:

PHYSICAL REVIEW E 66, 046101 (2002

0.36
0.34

C 0.32
1

0.3

2.5

0.9

a7

FIG. 8. The various regions of the plapeT with respect to the
rootsa, (k=1,2,3). The characteristics of the roots in the various
regions are described in the text. The solid lings<1, . . . ,6) are
defind by the vanishing of the discriminant of E@2), namely,
(= EA+3AA,—Ag)’+ 55 (A,— 2A2)3=0. The dotted lines
are given by Eq(6) for u<—1.5 andu=—1. Finally, the dash-
dotted line is given byT=(1—w)/(x—1.5) for 1< u<1.5. The
two insets show an enlargement of the regions around the point
=(—0.74,0.34) an®P=(1.22,0.82). Notice, in particular, the exis-
tence of the very narrow regios,,C3,C,.

Regions Solutions of E45)
Cs z>2B,—2Bu a,, az<—2B,—2Bu
Io 2,>2B,—2Bp a=az<—2B,—2Bu
A z,>26,—2Bu 2B<a,<—2Bu
C, Z>2B,—2Bu a<—2B,—2Bu
AZ!ABIBl!llIIS ZS>2B1_2:B/'L
ay,a3<—2B,—2Bu
3 a=az<—2p,-2Bu
2 Q<—2B,-2Bu
A4,Bo 14l None

(A5)

APPENDIX B: COMPUTATION OF I' AND OF THE
DENSITY IN THE CASE OF DEGENERATE ROOTS

Here we discuss briefly the computation of the functions
I'(t) andd(t) when the third-degree polynomi@l(z) has no
distinct roots(lines|; in Fig. 8). Since the equilibrium solu-
tion zg is never degenere, we do not find qualitative differ-
ences with respect to the no-degenerate case; in particular,
the long time behaviors df andd are unchanged.

First we consider the case of one doubly degenere root; let
it be, for example,a,=a; and thus C(z)=(z—a,)(z
—a,)?. Computing the inverse transform of E(4), Eq.

(25) has to be replaced by
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11(2u) p3(az)=(d'"YdZ " H[Q(2)(z—ax)*/C(2) ]| ;=a, With |
=P (a1 /B)t_ g QR (ay/p)(t—u) 1277 2
L(1)=¢1y(ay)et™ ,8¢>11(a1)f0eal ’ u du =1,2. Using the integral representation of the modified
Bessel functiorl ; we find

t
+ ¢>§1(az)ge(az’ﬁ"—,8¢>§1(a2)

L(t)=e/P's, (ay) + e(azlﬁ)t[%sz(az) +S5(a,)

t t—u 2u
xfoe(az/ﬁ)(t—u)( 3 u) 1 )du+¢ (az)e(azlﬁ)t

+e?| Bopl(ar)d <2t)—3¢>Q(a )J2.4,/25(20)
11\41 1,a1/2B 2 21\42 2,a2/2[3

_,8¢22(3 )f el@/Alt-w 1(jlj)du, (B1)
+:8¢(2?2(a2)\]1,a2/2ﬁ(2t)} (B2)

where ¢7)(a;)=P(a;)/C'(a1), $F(a1)=Q(ar)/C’ (ay),
p1(az)=(d' " HdZ " H[P(2)(z—a2)*/C(2)]| s, and  with S;(a;) given by Eq.(30); furthermore,

5 [(a2+2/3M)2—32(a2+2ﬂu—1)2]i if a, satisfies Eq(5)
4B H—a;
Sy(ap)= ¢21(az) ¢21(a2)(f)

Cc
(a2) =0 otherwise,
a,—a,;
(B3)
and the integralgy .(t) for k=1,2 are defined by
ch(t)——f N2TX atx- gy (B4)
1(c— x)k

Notice that the integral, .(t) coincides with that defined by E(6); furthermore J,.(t) is related toJ, ((t) by the relation
Jo6(t)=—(9/3c)I14(t). If a, does not satisfy Eq(5), the whole coefficient 0&@2/)t vanishes sinc€(a,)=C’(a,)=0.
The density is found to be

/ —2
dit)=1- T S(ay) (@ /B _ g2ty 4 Sz(az) t L. e(@2/At_ g—2ut
Sy(az) $%(a1)B . -
a@z /Bt _ o= 2ut 2t _ _a—2ut _
a2/2,8+,u( % " )+a1/2,8+,u{e [J1a,2p(20) =I5 - ,(20) ] =€ [ J1 4 pp—I1- 1}
P3(ay) ot 5 J1,25(20) = J1 - ,(21) ol J1 a2 91 4

T af2B ) | € | J2aes20F al2B+ e N Jaaast T pE

d’gz(az)ﬂ o~ -
+m{e2t[‘]l,&l2/2ﬁ(2t)_‘]l,fﬂ(Zt)]_e Z'U‘t[‘]l,aZIZﬁ_Jl,f,u]} , (B5)

wherejkychk <(0); onehas, in particularjlyczc—\/cz—l. We note that the long time behavior &f ;(t) is given by
i o(t)=1/\2mt (c—1); since it can be shown that

BPota)  BPo3(a:) BPe3a;)  d

—2B (az_zﬁ)2+ Q=28 g2,

one recovers the final results of the E(324a),(32b), valid in the spin glass phase.
Finally, let us consider the casg=a,=as (point Q in Fig. 8: C(z)=(z—a;)%. One has
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$5(a1) (t)s' BeS(a1) f(a””“ u)(tﬁ)“wu) | -

3
=2, G-\ s Te-na-1 u

Whered);(al)=(d'*1/dz'*1)P(z)|Z:al, ¢§,’,(a1):(d'*lldz'*l)Q(z)lzzal, |=1,2,3. Then, using the integral representation
of |4, one gets

1(t)\? t 1 dSu(ay) 1
F(t):e(allﬁ)t E(E S(a1)+ E S/(a1)+ 5S//(al) + 2t 341-181 J3,a1/2,8(2t)_ §¢3Qz(al)\]2’al/2£(2t)
1
+ §5¢3Qs(az)31,a1/2/3(2t)}, (B7)

where

S(a;) = ¢5y(ay) — pi(a) (B8)

a;— a§—432> (ay+2Bu)%—B4a,+2Br—1)% if a; satisfies Eq.(5)
2 | C(ay)=0 otherwise,

and the integralgy .(t) are defined by EqB4) for k=1,2,3. In particular, one hak (t) = 2((92/(902)\]1,0(0. The coefficient
of e(@/A)t vanishes sinc€(a;)=C’(a;)=C"(a;)=0. The density is

J20,28(2t)  J1a,2p(2t) =1 - ,(21) )

PS(ar) )
a2+ p (a3/2B+ w)?

1= o1 [w(al/zﬁm)

em( J3a,/28(2t) +

N e—ZMt J \]2 alIZB N Jl,al/Z,B_‘]l,—M ¢82(a1) e2t( ] (Zt) N 31,31/2'3(20 —le_ﬂ(Zt))
30126 3,128+ (a,/2B+ )2 2(ay/2B+p) 22/ ay/2B+
J1a,28— 31 - 3a1)B
_ ~ Ay K 33l ot ~
+e 2’“( J2a,2pF 228+ 1t (a1/2ﬁ+ﬂ){92t[\]1,a1/2/3(2t)—31,—M(2t)]—e z”t(Jl,allzﬁ_Jl,—,,,)} ,
(B9)
whereJy = Ji o(0). FromJ, ((t)=1/y27t3(c— 1)~ and
1B%3a) BPo%a) Bof(a)  d
2 a=28  (a;-2B) (a;-2B)° O¢a
one gets again the final results of E¢32a,(32b), valid in the spin glass phase.
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